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ABSTRACT Standard QTL mapping procedures seek to identify genetic loci affecting the phenotypic mean
while assuming that all individuals have the same residual variance. But when the residual variance differs
systematically between groups, perhaps due to a genetic or environmental factor, such standard
procedures can falter: in testing for QTL associations, they attribute too much weight to observations
that are noisy and too little to those that are precise, resulting in reduced power and and increased
susceptibility to false positives. The negative effects of such “background variance heterogeneity” (BVH) on
standard QTL mapping have received little attention until now, although the subject is closely related to
work on the detection of variance-controlling genes. Here we use simulation to examine how BVH affects
power and false positive rate for detecting QTL affecting the mean (mQTL), the variance (vQTL), or both
(mvQTL). We compare linear regression for mQTL and Levene’s test for vQTL, with tests more recently
developed, including tests based on the double generalized linear model (DGLM), which can model BVH
explicitly. We show that, when used in conjunction with a suitable permutation procedure, the DGLM-based
tests accurately control false positive rate and are more powerful than the other tests. We also find that
some adverse effects of BVH can be mitigated by applying a rank inverse normal transform. We apply our
novel approach, which we term “mean-variance QTL mapping”, to publicly available data on a mouse
backcross and, after accommodating BVH driven by sire, detect a new mQTL for bodyweight.
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A standard modeling assumption in quantitative trait locus (QTL)
mapping is that all individuals, regardless of differences in their phe-
notypic mean, have the same residual variance. In reality, the residual
variance—sometimes termed the environmental variance, and in gen-
eral relating to the apparent noisiness of the phenotype—can differ
between individuals. These differences in residual variance can arise
from many sources, both extrinsic, such as environmental factors, and
intrinsic, such as sex, or,more broadly, genetics. Environmental sources

of residual variance heterogeneity have been well-documented, and
include, for example, soil nitrogen and irrigation (Makumburage and
Stapleton 2011), temperature (Shen et al. 2014), and even the age at
which young birds begin to experience the environmental insults out-
side of the nest (Snell-Rood et al. 2015). Genetic sources of residual
variance heterogeneity have attracted increasing interest, with multiple
studies finding instances of the residual variance being heritable
(Sorensen and Waagepetersen 2003; Hill and Mulder 2010; Sørensen
et al. 2015; Gonzalez et al. 2016; Lin et al. 2016; Mitchell et al. 2016),
and in some cases substantially attributable to allelic variation in indi-
vidual genes (Paré et al. 2010; Wolc et al. 2012; Yang et al. 2012; Hulse
andCai 2013;Wang et al. 2014; Ayroles et al. 2015; Forsberg et al. 2015;
Yadav et al. 2016; Ivarsdottir et al. 2017).

The presence of residual variance heterogeneity, however, regardless
of its source, can be problematic for analysis protocols that disregard it.
Differences in residual variance between groups of individuals affect the
precision of estimated means and, in turn, tests of significance or
association (Cochran 1937; Yates and Cochran 1938). In the context
of QTL mapping, ignoring such differences discards information that
could be exploited to increase the power to detect QTL; and in the case
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of mapping vQTL, it can covertly increase the false positive rate to well
above the nominal level.

Specifically, the background presence of a major variance-controlling
factor (e.g., sex, housing, strain, a vQTL, etc.) implies that inferences
about any other effect (e.g., that of a QTL elsewhere in the genome) occur
against a backdrop of systematically heterogeneous residual variance.
This “background variance heterogeneity” (BVH) acts to disrupt the
natural observation weights: rather than every individual being subject
to equal noise variance and therefore meriting equal weight, with BVH
present some individuals’ phenotypes are inherently more (or less) noisy
and so due less (or more) weight. And just as reweighting accordingly
should lead to a more powerful analysis, then assuming all weights are
equal (i.e., variance homogeneity) risks overleveraging outliers and in-
creasing the potential for both false negatives and false positives. This is
likely to be true not only for studies detecting mQTL but also those
detecting vQTL, which rely on the accurate attribution of residual noise.

Nonetheless, consideration of variance effects—whether as the tar-
get of inference or as a feature of the data to be accommodated—has
thus far remained outside of routine genetic analysis. This could be in
part because vQTL are sometimes considered of esoteric secondary
interest, intrinsically controversial in their interpretation (Sun et al.
2013; Shen and Ronnegard 2013), or a priori too hard to detect
(Visscher and Posthuma 2010). But it is also likely to be in part because
standard protocols for finding and reporting vQTL are currently lack-
ing, and because the advantages of modeling heterogeneous variance,
even when targeting mQTL, remain under-appreciated and largely
undemonstrated.

A number of statistical models andmethods have been developed or
adapted specifically to detect vQTL. These include: Levene’s test
(Struchalin et al. 2010) and its generalizations (Soave et al. 2015;
Soave and Sun 2017); the Fligner-Killeen test (Fraser and Schadt
2010); Bartlett’s test (Freund et al. 2013); and methods based on, or
related to, the double generalized linear model (DGLM) and similar
(Rönnegård and Valdar 2011; Cao et al. 2014; Dumitrascu et al. 2018).
Tests have also been developed to detect genotype associations with
arbitrary functions of the phenotype, for example highermoments, and
these include a variant of the Komolgorov-Smirnov test (Aschard et al.
2013) and a semi-parametric exponential tilt model (Hong et al. 2016).

Of the above methods, the ability to accommodate BVH of known
source is limited to the DGLMof Rönnegård andValdar (2011) (as well
as a very recent Bayesian counterpart, described in Dumitrascu et al.
2018), which can include variance effects of arbitrary covariates as well
as those belonging to the target (or foreground) QTL.

When the source of BVH is unknown, strategies to protect against it
are less obvious. Since the threat manifests through sensitivity to
distributional assumptions, possible remedies include side-stepping
such assumptions via non-parametric approaches, e.g., permutation
testing, or reshaping the distribution prior to analysis through variable
transformation. Both have been considered in the vQTL context, with
permutation used in Hulse and Cai (2013) and Yang et al. (2012) and
transformation in Rönnegård and Valdar (2011), Yang et al. (2012),
Sun et al. (2013), and Shen and Carlborg (2013), but not specifically for
controlling mQTL or vQTL false positives in the presence of BVH.

Here we examine the effect of modeled and unmodeled BVH on
power and false positive ratewhenmappingQTLaffecting themean, the
variance, or both. In doing so we:

1. Describe how the DGLM can be used develop a robust, straightfor-
ward procedure for routine mQTL and vQTL analysis, which we
term “mean-variance QTL mapping”;

2. Compare alternative proposed methods for mQTL and vQTL
analysis;

3. Show how accommodating BVH with the DGLM can improve
power for detecting mQTL, vQTL, and mvQTL compared with
other methods;

4. Show how sensitivity to model assumptions can be rescued by
variable transformation and/or permutation; and

5. Demonstrate the discovery of a new QTL for mouse bodyweight
from an existing F2 intercross data resource (Leamy et al. 2000).

In two companion papers, we describe R package vqtl, which
implements our procedure (Corty and Valdar 2018), and in Corty
et al. (2018) apply it to two published QTL mapping experiments
detecting a novel mQTL in one and a novel vQTL in the other. In
particular, Corty et al. (2018) demonstrates a principle investigated
here: that when an mQTL also has variance effects, those variance
effects induce a type of proximal BVH, and modeling them explicitly
therefore improves mQTL detection.

STATISTICAL METHODS
This section reviews the tests and evaluation procedures that we studied
through simulation. First, we describe eight statistical tests that can be used
tomodel theeffectofa single locusonphenotypemeanand/orvariance: the
standard linear model, Levene’s test, Cao’s three tests, and three DGLM-
based tests. We also describe four procedures for evaluating the statistical
significance (i.e., calculating p-values) of these tests—a standard asymp-
totic evaluation and three procedures that reasonably could be expected to
provide protection against violations of model assumptions.

Definitions
We start by defining three partially overlapping classes of QTL:

mQTL: a locus containing a genetic factor that causes heterogeneity
of phenotype mean,

vQTL: a locus containing a genetic factor that causes heterogeneity
of phenotype variance, and

mvQTL: a locus containing a genetic factor that causes heterogeneity
of either phenotype mean, variance, or both — a generalization
that includes the other two classes. [Note: this usage is distinct
from that of Yadav et al. (2016)]

In addition, sincewe restrict our attention toQTLmappingmethods
that test genetic association with a phenotype one locus at a time, we
distinguish two sources of variance effects:

Foreground Variance Heterogeneity (FVH): effects on the pheno-
type variance that arise from the locus under consideration (the
focal locus);

Background Variance Heterogeneity (BVH): effects on the pheno-
type variance that arise from outside of the focal locus, e.g., from
another locus or an experimental covariate.

Procedures to evaluate the significance of a single test
In comparing different statistical tests and their sensitivity to BVH,
namely the effect of BVH on power and false positive rate (FPR), it is
important to acknowledge that variousmeasures could be taken tomake
significance testingproceduresmore robust tomodelmisspecification in
general and to BVH specifically. The significance testing methods
consideredhereare frequentist, involving the calculationof a test statistic
T on the observed data followed by an estimation of statistical signif-
icance based on a conception of T’s distribution under the null. BVH,
however, will often constitute a departure of distributional assump-
tions, and in any rigorous applied statistical analysis when departures
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are expected it would be typical to consider protectivemeasures such as,
for example, transforming the response to make asymptotic assump-
tions more reasonable, or the use of computationally intensive proce-
dures to evaluate significance empirically, such as those based on
bootstrapping or permutation.

Nominal significance (i.e., the p-value for a single hypothesis test) is
evaluated using four distinct procedures. The first two rely on asymptotics:

1. Standard: The test statistic T is computed on the observed data and
compared with its asymptotic distribution under the null.

2. Rank-based inverse normal transform (RINT): As for standard, except
observed phenotypes fyigni¼1 are first transformed to strict normality
using the function RINTðyiÞ ¼ F21 rankðyiÞ2 3 =

8Þ= nþ 1 =

4Þð �;ð½
where F is the normal c.d.f. and rankðyiÞ is gives the rank (from
1; . . . ; n) (Beasley et al. 2009).

The second two determine significance empirically based on ran-
domization: the test statistic T is recomputed as TðrÞ under randomi-
zations of the data r ¼ 1; . . . ;R, and the resulting set of statistics
fTðrÞgRr¼1 is used as the empirical distribution of T under the random-
ized null. Two alternative randomizations are considered:

3. Residperm: we generate a pseudo-null response fyðrÞi gni¼1 based on
permuting the residuals of the fitted null model, (Freedman and
Lane 1983; Good 2013), a process recently applied in the field of
QTL mapping by Cao et al. (2014).

4. Locusperm: we leave the response intact, instead permuting the
rows of the design matrix (or matrices) that differentiate(s) the
null from alternative model.

Procedure to evaluate genomewide significance
In the context of a genomescan,wheremanyhypotheses are tested,weaim
to control FPR genomewide through a family-wise error rate (FWER), the
probability of making at least one false positive finding across the whole
genome. This is done following the general approach of Churchill and
Doerge (1994), which is closely related to the locusperm procedure de-
scribed above, and which we refer to as genomeperm. Briefly, we perform
an initial genome scan, recording test statistics fTlgLl¼1 for all L loci. Then
for each randomization r ¼ 1; . . . ;R; and for only the parts of themodel
that distinguish the null from the alternative model, the genomes are

permuted among the individuals; the scan is then repeated to yield sim-

ulated null test statistics fTðrÞ
l gLl¼1 of which the maximum, TðrÞ

max; is

recorded. The collection of fTðrÞ
maxg

R

r¼1 from all R such permutations is
then used to fit a generalized extreme value distribution (GEV)
(Dudbridge and Koeleman 2004; Valdar et al. 2006), and the quantiles
of this are used to estimate FWER-adjusted p-values for each fTlgLl¼1:

Standard linear model (SLM) for detecting mQTL
The standard model of quantitative trait mapping uses a linear re-
gression based on the approximation of Haley and Knott (1992) and
Martínez and Curnow (1992) to interval mapping of Lander and Bot-
stein (1989). The effect of a given QTL on quantitative phenotype yi of
individual i ¼ 1; . . . ; n is modeled as

yi � N
�
mi;s

2� (1)

where s2 is the residual variance and mi is a linear predictor for the
mean, defined, in what we term the “full model”, as

Full model : mi ¼ mþ xTi bþ qTi a; (2)

where m is the intercept, xi is a vector of covariates with effects b, and
qi is a vector encoding the genetic state at the putative mQTL with

corresponding mQTL effectsa. In the case considered here of biallelic
loci arising from a cross of two founders, A and B, the genetic state
vector qi ¼ ðai; diÞT is defined as follows: when genotype is known,
for genotypes ðAA;AB;BBÞ; the additive dosage is ai ¼ ð0; 1; 2Þ and
the dominance predictor is di ¼ ð0; 1; 0Þ; when genotype is available
only as estimated probabilities pðAAÞ; pðABÞ and pðBBÞ; following
Haley and Knott (1992) andMartínez and Curnow (1992), we use the
corresponding expectations, ai ¼ 2pðAAÞ þ pðABÞ and di ¼ pðABÞ:

The test statistic for anmQTL is basedon comparing thefit of the full
model, acting as an alternative model, with that of a null that omits the
locus effect, namely,

Null model : mi ¼ mþ xTi b: (3)

Since the regression in each caseprovides amaximumlikelihoodfit, the
test statistic used here is likelihood ratio (LR) statistic, T ¼ 2ðℓ1 2 ℓ0Þ;
where ℓ1 and ℓ0 are the log-likelihoods under the alternative and the
null respectively. For the biallelic model, the asymptotic test is the
likelihood ratio test (LRT) whereby under the null, T � x2

2: (Note:
Alternative evaluation using the F-test is in general more precise but
for our purposes provides equivalent results.)

The residperm approach to empirical significance evaluation of T
proceeds as follows. We first fit the null model (Equation 3) to obtain
predicted values m̂i ¼ xTi b̂ and estimated residuals êi such that
yi ¼ m̂i þ êi: Then, for each randomization r ¼ 1; . . . ;R; we generate
pseudo-null phenotypes fyðrÞi gni¼1 as

yðrÞi ¼ m̂i þ êprðiÞ;

where ifpr is a vector containing a random permutation of the indices
i ¼ 1; . . . ; n, then prðiÞ is its ith element, mapping index i to its rth
permuted version. The null and alternative models are then fitted to
fyðrÞi gni¼1 to yield ℓðrÞ1 and ℓðrÞ0 ; and hence TðrÞ:

In the locusperm approach to empirical significance, the response is
unchangedbutpermutationsareapplied tothe locusgenotypes.Foreach
randomization r, the full model mi is

Permuted full model : mi ¼ mþ xTi bþ qTprðiÞa (4)

where prðiÞ is as defined for residperm above. This full model fit
yields ℓðrÞ1 ; and then TðrÞ ¼ 2ðℓðrÞ1 2 ℓ0Þ: Note that ℓðrÞ0 need not be
recomputed after randomization because because only the rows of
the design matrices that are unique to the alternative model are per-
muted and thus ℓðrÞ0 ¼ ℓ0:

Levene’s Test (LV) for detecting vQTL
Levene’s test is a procedure for differences in variance between groups that
can be used to detect vQTL. Suppose individuals are in Gmutually exclu-
sive groups g ¼ 1; . . . ;G: Let g½i� denote the group to which individual i
belongs, denote gth group size as ng ¼

P ​ n
i¼1Ifg½i�¼gg; and gth group

mean as�yg ¼ n21
g

P​ n
i¼1yiIfg½i�¼gg: Thendenote the ith absolute deviation

as zi ¼ jyi 2�yg½i�j; the group mean of these as �zg ¼ n21
g

P ​ n
i¼1ziIfg½i�¼gg

and overall mean �z ¼ n21P​ n
i¼1zi: Levene’sW statistic is then

W ¼
P​ G

g¼1ng�zg2�z2

G2 1

2
64
P​ n

i¼1

�
zi 2�zg½i�

�2

ðn2GÞ

3
75
21

  ; (5)

which under the null model of no variance effect follows the F distri-
bution as W � FðN2G;G2 1Þ (Levene 1960). Note that replacing
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means of y with medians gives the related Brown-Forsythe test (Brown
and Forsythe 1973), and replacing all instances of z with y in Equation 5
gives the ANOVA F statistic.

Levene’s test does not lend itself naturally to the residperm ap-
proach because it does not explicitly involve a null model to split the
data into hat values and residuals.We therefore use the null model from
the SLM (Equation 3) to approximate the residperm procedure with
Levene’s test. To execute the locusperm procedure, for each random-
ization r, the group labels are permuted among the individuals, which is
equivalent to replacing all instances of g½i� above with g½prðiÞ�; with
prðiÞ defined as above. A corresponding genomewide procedure, al-
though not performed here, would ensure that each randomization r
applies the same permutation pr across all loci.

Cao’s Tests
Cao et al. (2014) elaborates the SLM to have a variance parameter that
differs by genotype, i.e.,

yi � N
�
mi;s

2
i

�
; (6)

where mi is the linear predictor, s2
i is the variance of the ith individ-

ual. These are defined in what we term the “full model” as

Full model :

�
mi ¼ mþ xTi bþ qTi a     
s2
i ¼ fg½i�  

; (7)

where g½i� indexes the genotype group to which i belongs, and
ffggGg¼1

are the variances of the g ¼ 1; . . . ;G genotype groups. Thus
an individual’s variance is entirely dictated by its genotype, and that
genotype must be categorically known (or otherwise assigned). Cao
et al. (2014) fits this model using a two-step, profile likelihood
method, which in our applications we observe to be indistinguishable
from full maximum likelihood (Figure S8).

Cao et al. (2014) describes tests formQTL, vQTL andmvQTL based
on comparing a full model against three different null models; we detail
these tests below in our notation, denoting them respectively CaoM,
CaoV, and CaoMV.

CaoM test for detection of mQTL: The CaoM test involves an LRT
between Cao’s full model and Cao’s no-mQTL model:

Cao’s no-mQTL model :  

�
mi ¼ mþ xTi b
s2
i ¼ fg½i�  

; (8)

To execute the residperm procedure for CaoM, pseudo-null pheno-
types are generated using m̂i and êi from Cao’s no-mQTL model
(Equation 8). The locusperm procedure respecifies the full model
(Equation 7), leaving the variance model unchanged and specifying
the mean predictor as mi ¼ mþ xTi bþ qTprðiÞa:

CaoV for detection of vQTL: The CaoV test involves an LRT between
Cao’s full model and Cao’s no-vQTL model:

Cao’s no-vQTL model :    

�
mi ¼ mþ xTi bþ qTi a   
s2
i ¼ s2 ; (9)

where the unsubscripted s2 is a single, overall residual variance. This
nullmodel is identical to the alternativemodel in the SLM (Equation 2).

To execute the residperm procedure for CaoV, pseudo-null pheno-
types are generating using m̂i and êi from Cao’s no-mQTL model
(Equation 9). The locusperm procedure respecifies the full model

(Equation 7), leaving the mean sub-model unchanged and specifying
the variance predictor as s2

i ¼ fg½pðiÞ�:

CaoMV for detection of generalized mvQTL: The CaoMV test involves
an LRT between Cao’s full model and Cao’s no-QTL model:

Cao’s no-QTL model :          

�
mi ¼ mþ xTi b 
s2
i ¼ s2  

: (10)

This null model is identical to the null model in the SLM (Equation 3).
To execute the residperm procedure for CaoMV, pseudo-null phe-

notypes are generated using m̂i and êi from Cao’s no-QTL model
(Equation 10). The locusperm procedure specifies the mean predictor
as mi ¼ mþ xTi bþ qpðiÞ and the variance predictor as s2

g½i� ¼ fpðiÞ:

Double Generalized Linear Model (DGLM)
The DGLM models the phenotype yi via two linear predictors as

yi � N
�
mi;s

2
i

�
; where s2

i ¼ s2 · expðviÞ 

where mi predicts the phenotype mean and vi predicts the extent
to which the baseline residual variance s2 is increased in individ-
ual i. In what we term the “DGLM full model”, these are specified
as

Full model :

�
mi ¼ mþ xTi bþ qTi a
vi ¼ zTi g þ qTi u

  ; (11)

where m is the intercept, zi is a vector of covariates (which may be
identical to xi), g is a vector of covariate effects on vi, and u is a vector
of locus effects on vi.

As with Cao’s full model, the DGLM full model can be compared,
in a likelihood ratio test, with various null models to test for mQTL,
vQTL (Rönnegård and Valdar 2011), or mvQTL. A full maximum
likelihood fitting procedure for the DGLM was provided by Smyth
(1989).

DGLMM for detecting mQTL: For detecting mQTL, we use an LRT
of the DGLM full model in Equation 11 against the no-mQTL
model:

No-mQTL model :

�
mi ¼ mþ xTi b
vi ¼ zTi g þ qTi u

  ; (12)

where the LR statistic has asymptotic distribution T � x2
2.

To execute the residperm procedure for DGLMM, pseudo-null phe-
notypes are generated using m̂i and êi from Equation 12. The locusperm
procedure respecifies the mean predictor as mi ¼ mþ xTi bþ qTpðiÞa
and does not modify the variance predictor.

DGLMV for detecting vQTL: For detecting vQTL,we use an LRTof the
DGLM full model in Equation 11 against the no-vQTL model:

No-vQTLmodel :

�
mi ¼ mþ xTi bþ qTi a 
vi ¼ zTi g

; (13)

where the LR statistic has asymptotic distribution T � x2
2.

To execute the residperm procedure for DGLMV, pseudo-null phe-
notypes are generated using m̂i and êi from the Equation 13. The
locusperm procedure does not modify the variance predictor and
respecifies the mean predictor as vi ¼ zTi g þ qTpðiÞu.
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DGLMMV for detecting mvQTL: For detectingmvQTL,weuse an LRT
of the DGLM full model in Equation 11 against the no-QTL model:

No-QTL model :

�
mi ¼ mþ xTi b 
vi ¼ zTi g  

; (14)

where the LR statistic has asymptotic distribution T � x2
4.

To execute the residperm procedure for DGLMMV, pseudo-null
phenotypes are generated using m̂i and êi from the Equation 14.
The locusperm procedure respecifies the mean predictor as
mi ¼ mþ xTi bþ qTpðiÞa and the variance predictor as
vi ¼ zTi g þ qTpðiÞu.

SIMULATION METHODS
The eightmethods and four significance testing procedures described in
the previous section, amounting to 32 test-procedure combinations in
total, were compared by simulation. The simulations examined the
performanceof eachcombination, in termsof false and truepositive rate,
under eight distinct scenarios relating to the presence or absence of a
QTL (and if present, then what type), and the presence or absence of
BVH. We describe the general simulation setup below, followed by a
detailed description of the eight scenarios and then describe the metrics
by which performance was judged.

Simulating locus and covariate
Each simulated experiment consisted of 300 individuals, where each
individual was defined by one single-locus genotype, one covariate, and
one phenotype.

The genotype for individual i, denoted by qi, was simulated accord-
ing to a random process to mimic an F2 intercross:

qi � f21; 0; 1g with probability f0:25; 0:5; 0:25g
The covariate for individual i, denoted zi, was specified as a five-level
categorical factor, with levels assigned to individuals as

zi ¼

8>>>><
>>>>:

level  1 if   1# i# 60
level  2 if   61# i# 120
level  3 if   121# i# 180
level  4 if   181# i# 240
level  5 if   241# i# 300

where zi is an indicator vector such that, for example,
zi ¼ ð1; 0; 0; 0; 0Þ denotes membership of level 1. This covariate,
which was fixed across simulations, was intended to mimic a generic,
fixed aspect of experimental design in a typical QTL mapping study
(for example, batch, technician, housing, etc.) that could plausibly
influence the precision of the observations. When BVH is simulated,
it is driven by this covariate.

Scenarios
We conducted simulated experiments under eight different scenarios.
These scenarios varied conceptually across two dimensions. First, we
considered four types of locus:

1. null locus: The locus has no effect on phenotype.
2. pure mQTL: The locus has an additive effect on the phenotype mean.
3. pure vQTL: The locus has an additive effect on the log of the

residual phenotype variance.
4. mixed mvQTL: The locus has both an additive effect on phenotype

mean and an additive effect on the log of residual phenotype variance.

Then, we considered whether or not BVH was present, i.e.:

1. BVH absent: The covariate does not influence the residual variance
of the phenotype.

2. BVH present: The covariate influences the residual variance of the
phenotype (in addition to the locus, if a vQTL or mvQTL).

The resulting eight scenarios (i.e., all combinations) were realized in
silico with three parameters: the effect of the locus on phenotype mean
(a), the effect of the locus on phenotype variance (u), and the effect of
the covariate on phenotype variance (g). Values assigned to these
parameters are listed in Table 1. The rationale for selecting values of
a and u was as follows:

1. pure mQTL: The effect size of the pure mQTLwas chosen so that it
always explains 5% of the phenotype variance, which is consistent
with smaller effect sizes typically sought and identified in QTL
mapping experiments. Such an mQTL is detectable with approx-
imately 70% power at a 5% false positive rate by the traditional
mQTL test (the standard linear model) when 300 individuals are
simulated, a typical population size for QTLmapping experiments.

2. pure vQTL: vQTL analysis is much less established, so the vQTL
effect size was chosen to match the detectability of the mQTL.
Thus, the vQTL effect size was defined such that the traditional
vQTL test (Levene’s test) has 70% power at 5% FPR in a population
of 300 individuals in the absence of BVH.

3. mixed mvQTL: The mvQTL effect sizes were chosen such that the
mean and variance signals are equally detectable, and the aggregate
signal is detectable by CaoMV and DGLMMV with 70% power at an
FPR of 5% in a population of 300 individuals in the absence of BVH.

The values of g used for simulating BVHwere 0 ¼ ½0; 0; 0; 0; 0� and
gBVH ¼ ½20:4; 2 0:2; 0; 0:2; 0:4�. The former chosen to ensure con-
stant residual variance for simulations where BVH is absent; the latter
to mirror the extent of BVH we noted in experimental data, while
having a concise expression as equally spaced effects centered at zero.
In null locus and mQTL simulations, gBVH results in group-wise stan-
dard deviations of approximately ½0:67; 0:82; 1:00; 1:22; 1:49�. In
vQTL and mvQTL simulations, gBVH and u combine additively on
the log standard deviation scale and result in fifteen unique variances
as detailed in the Supplementary Materials.

Phenotype simulation
For each of the eight scenarios, we conducted 10; 000 simulated exper-
iment. For scenario s, the phenotype for individual i, denoted yi, was
simulated from a normal distribution based on the genotype and cova-
riate (qi and xi) and the scenario parameters (as, us, and gs) as:

yi � N
�
mi;s

2
i

�
  ;

where mi ¼ qias, and

s2
i ¼ exp

�
2
�
zTi gs þ qius

��
:

(Further details in Supplementary Materials.)

Testing significance
To each simulated experiment, eight tests were applied, and four
procedures were used to assess the statistical significance of each test,
for a total of 32 test-procedures.

The eight tests comprise three tests for detectingmQTL: SLM,CaoM,
and DGLMM; three for detecting vQTL: Levene’s test, CaoV, DGLMV;
and two for detecting mvQTL: CaoMV and DGLMMV. These tests are
detailed in the Statistical Methods and summarized in Table 2.
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The four procedures for evaluating the statistical significance of
results were: standard, RINT, residperm, and locusperm, as described in
the Statistical Methods. The RINT procedure was selected because it
returns any phenotype distribution, nomatter how exotic, to a standard
normal distribution. The fact that it is commonly used in genetics
researchdemands that its properties, and its effects onQTLmapping, be
better understood. The residperm was selected because it was recently
proposed for use in mQTL, vQTL, and mvQTL mapping studies (Cao
et al. 2014). The locusperm procedure was developed in response to
suspected shortcomings of the above robustifying procedures.

Evaluation of tests and procedures
Tests and procedures for assessing statistical significancewere evaluated
basedon their empirical false positive rate (FPR) andpower at a nominal
FPRof0.05.The empirical FPRofa given test-procedurecombination in
a given scenario was taken as the fraction of null simulations (where the
phenotype was simulated with no dependence on genotype) that
resulted in p, 0:05. Similarly, the empirical power was computed as
the fraction of non-null simulations that resulted in p, 0:05. These
quantities are naturally considered as estimates of a binomial propor-
tion, so their standard errors were calculated by the method of Clopper
and Pearson (1934).

The above evaluations focused only on the cutoff of p ¼ 0:05. Also
considered, however, were all possible cutoffs, usingQQplots and ROC
plots, which allow examination of the empirical FPR as a function of
nominal FPR and the empirical power as a function of empirical FPR,
respectively; these illustrate the spectrum of trade-offs that each test
makes available, but do not meaningfully change the overall interpre-
tation of the results, so we relegate them to the Supplementary
Materials.

DATA AND SOFTWARE

Leamy et al. summary of original study
Leamy et al. (2000) backcrossed mice from strain CAST/Ei, a small,
lean strain, into mouse strain M16i, a large, obese strain. Nine F1 males
were bred with 54 M16i females to produce a total of 421 offspring
(208 female, 213 male), which were genotyped at 92 microsatellite
markers across the 19 autosomes and phenotyped for body composi-
tion and morphometric traits. We retrieved all available data on this
cross, which included marker genotypes, covariates, and eight pheno-
types (body weight at five ages, liver weight, subcutaneous fat pad
thickness, and gonadal fat pad thickness), from the Mouse Phenome
Database (Grubb et al. 2014), and estimated genotype probabilities at

2cM intervals across the genome using the hiddenMarkov model in R/
qtl (Broman et al. 2003).

This mapping population has been studied for association with
several phenotypes: asymmetry of mandible geometry (Leamy et al.
2000), limb bone length (Leamy et al. 2002; Wolf et al. 2006), organ
weight (Leamy et al. 2002; Wolf et al. 2006; Yi et al. 2006), fat pad
thickness (Yi et al. 2005, 2006, 2007), and body weight (Yi et al. 2006).
The most relevant prior study to this reanalysis, Yi et al. (2006), used
standard methods to identify QTL for body weight at three weeks on
chromosomes 1 and 18. However, we were not able to reproduce this
result, despite following their analysis as described.

Availability of data and software
Analyses were conducted in the R statistical programming language
(R Core Team 2017). The simulation studies used the implemen-
tation of the standard linear model from package stats, Levene’s
test from car, Cao’s tests as published in Cao et al. (2014) and the
DGLM tests in package dglm. Files S1, S2, and S3 contain the R
scripts necessary to replicate the simulation studies and their
analysis, relying on the plotROC package to make ROC plots
(Sachs 2017). File S4 contains the data from Leamy et al. (2000)
that was reanalyzed. File S5 contains the attempted replication of
the original analysis (Yi et al. 2006) and file S6 contains the new
analysis, using package vqtl (Corty and Valdar, 2018).

The reanalyzed dataset is available on the Mouse Phenome
Database (Grubb et al. 2014) with persistent identifier MPD:206.
The entire project, including data and all analysis scripts, is available
as a public, static Zenodo repository with DOI: 10.5281/zen-
odo.1455184. Supplemental material available at Figshare: https://
doi.org/10.25387/g3.7290146.

RESULTS

Simulation study on single locus testing
Simulationswereperformedtoexamine theabilityof theeight tests listed
in Table 2 to detect nonzero effects belonging to their target QTL types
(mQTL, vQTL, mvQTL), and to control the number of false positives
when no suchQTL effects were present. Simulations were conducted in
the presence and absence of background variance heterogeneity (BVH),
and for each test, with p-values calculated by each of the four signifi-
cance assessment procedures (standard, RINT, residperm, locusperm).
The full combination of settings is listed in Table 3, which also lists
results pertaining to a nominal FPR of 0.05, and described in more
detail in Simulation Methods section.

n Table 1 Eight scenarios were simulated, as determined by the
values of three parameters. a indicates the additive effect of the
locus on phenotype mean, u the additive effect of the locus on
phenotype variance, and g the effect of the covariate on
phenotype variance. The two possible values of g are
0 ¼ ½0;0;0;0;0� and gBVH ¼ ½20:4; 20:2;0;0:2;0:4�

conceptual scenario simulation parameters

locus BVH a u g

no QTL absent 0 0 0
no QTL present 0 0 gBVH
mQTL absent 0.22 0 0
mQTL present 0.25 0 gBVH
vQTL absent 0 0.17 0
vQTL present 0 0.17 gBVH
mvQTL absent 0.18 0.14 0
mvQTL present 0.20 0.136 gBVH

n Table 2 The eight tests that were evaluated in the simulation
studies. FVH: foreground variance heterogeneity (i.e., variance
effects at the QTL). BVH: background variance heterogeneity

Category Test Description

mQTL SLM Conventional test of mean
differences; allows neither FVH
nor BVH

mQTL CaoM Allows FVH, but not BVH
mQTL DGLMM Allows FVH and BVH
vQTL Levene’s test Conventional test of variance

differences; detects FVH, does
not allow BVH

vQTL CaoV Detects FVH, does not allow BVH
vQTL DGLMV Detects FVH, allows BVH
mvQTL CaoMV Detects FVH, does not allow BVH
mvQTL DGLMMV Detects FVH and allows BVH
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Testing for mQTL with BVH absent: SLM and CaoM

outperform DGLMM

In the absence of BVH, SLM and CaoM accurately control FPR under all
significance assessment procedures (Figure 1 and Table 3). DGLMMwas
slightly anti-conservative under the standard and RINT procedures with
FPR = 0.057 and 0.055, respectively. With either permutation procedure
used to assess significance, however, DGLMM accurately controlled FPR.

SLMandCaoMhad indistinguishable power in the detection ofmQTL
under all significance assessment procedures (Figure 2). DGLMM, how-
ever, had equal power to those tests only under the standard and RINT
procedures, which have inflated FPR. Under the permutation-based pro-
cedures, DGLMM was less powerful than the other test-procedures.

These results reflect the reality that, when a simple model is exactly
true, a more elaborate model tends to be less powerful. Additionally,
they highlight the capability of the permutation-based procedures to
accurately control FPR even when the standard and RINT procedures
fail to do so (as in the case of DGLMM).

Testing for mQTL with BVH present: DGLMM dominates: SLM and
CaoM accurately controlled FPR under all four procedures to assess

statistical significance (Figure 1). As in the absence of BVH, DGLMM

exhibited a slightly inflated FPR under the standard and RINT proce-
dures (0.059 and 0.057, respectively), but accurately controlled FPR
under the permutation-based procedures (Table 3).

Under all four procedures,DGLMMwasmore powerful than SLMand
CaoM (Figure 2). The two procedures under which DGLMM accurately
controlled FPR had power of 0.822 and 0.818, greatly exceeding the power
of CaoM and SLM, which were in the range [0.694, 0.719] (Table 3).

Based on the results of these simulations, DGLMM-residperm and
DGLMM-locusperm are the recommended test-procedure combina-
tions for mQTL testing in the presence of BVH.

For each mQTL test-procedure combination, the AUC (Table S1),
standard error of the positive rate at a ¼ 0:05 (Table S2), QQ plots
illustrating the empirical FPR at each nominal FPR level (Figure S4),
and ROC curves illustrating the spectrum of trade-offs between avail-
able FPR and power (Figure S1) are provided in the Supplementary
Materials.

Testing for vQTL with BVH absent: CaoV and DGLMV outperform
Levene’s test: In the absence of BVH, all vQTL tests hadnearly-accurate

n Table 3 Empirical positive rates of all tests under all significance assessment procedures in all scenarios based on 10,000 simulations,
1,000 permutations each to estimate empirical null distributions (residperm and locusperm), and a nominal false positive rate (FPR) of
a ¼ 0:05. Entries in column 1 and 5 through all rows, columns 3 and 7 in the top third, and columns 2 and 6 in the middle third represent
empirical FPR. Where the empirical FPR is within one standard error of the nominal FPR of 0.05, it is written in normal font. Where it is
overly conservative, it is underlined. Where it is anti-conservative, it is in boldface. The entries in the rest of the table represent power.
Given the sample size of 10,000, the standard error for the values in this table are all between 0.005 and 0.01. Generally, values near 0.05
have a standard error near 0.005 and values near 0.5 have a standard error near 0.01. All standard errors are listed in Table S2 and plotted
visually in Figure 1, Figure 2, Figure 3, and Figure 4

BVH absent BVH present

test procedure null mQTL vQTL mvQTL null mQTL vQTL mvQTL

SLM standard 0.052 0.717 0.054 0.502 0.052 0.706 0.052 0.506
RINT 0.051 0.712 0.051 0.486 0.053 0.719 0.049 0.512
residperm 0.050 0.710 0.052 0.494 0.050 0.700 0.052 0.498
locusperm 0.049 0.709 0.052 0.497 0.051 0.699 0.051 0.499

CaoM standard 0.053 0.717 0.051 0.510 0.054 0.702 0.049 0.520
RINT 0.052 0.713 0.048 0.496 0.054 0.717 0.049 0.529
residperm 0.051 0.709 0.048 0.501 0.051 0.698 0.048 0.509
locusperm 0.049 0.704 0.047 0.496 0.050 0.694 0.046 0.506

DGLMM standard 0.057 0.714 0.055 0.510 0.059 0.836 0.057 0.654
RINT 0.055 0.713 0.055 0.499 0.057 0.834 0.056 0.648
residperm 0.049 0.693 0.048 0.490 0.052 0.822 0.050 0.631
locusperm 0.049 0.691 0.047 0.484 0.050 0.818 0.048 0.628

Levene’s test standard 0.045 0.048 0.655 0.452 0.050 0.045 0.566 0.388
RINT 0.046 0.041 0.638 0.416 0.048 0.041 0.539 0.340
residperm 0.049 0.052 0.664 0.461 0.052 0.048 0.574 0.397
locusperm 0.047 0.051 0.665 0.461 0.052 0.049 0.576 0.399

CaoV standard 0.054 0.053 0.738 0.536 0.135 0.131 0.736 0.568
RINT 0.045 0.041 0.692 0.457 0.046 0.047 0.552 0.366
residperm 0.050 0.049 0.721 0.510 0.053 0.050 0.564 0.390
locusperm 0.049 0.047 0.717 0.505 0.051 0.047 0.561 0.384

DGLMV standard 0.054 0.053 0.721 0.520 0.058 0.050 0.732 0.527
RINT 0.045 0.041 0.673 0.444 0.023 0.022 0.564 0.346
residperm 0.049 0.049 0.699 0.496 0.020 0.018 0.537 0.331
locusperm 0.048 0.048 0.698 0.490 0.052 0.046 0.708 0.502

CaoMV standard 0.053 0.607 0.633 0.742 0.113 0.642 0.643 0.749
RINT 0.046 0.595 0.567 0.698 0.049 0.603 0.434 0.650
residperm 0.049 0.597 0.606 0.726 0.054 0.516 0.503 0.632
locusperm 0.049 0.596 0.610 0.729 0.053 0.517 0.503 0.634

DGLMMV standard 0.056 0.606 0.621 0.734 0.060 0.746 0.631 0.811
RINT 0.050 0.597 0.559 0.694 0.038 0.724 0.440 0.732
residperm 0.050 0.589 0.587 0.711 0.025 0.631 0.466 0.694
locusperm 0.050 0.586 0.585 0.713 0.054 0.735 0.596 0.790
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FPR control (Figure 1). All tests had FPR within one standard error of
0.05 under both empirical significance assessment procedures (Table 3
and Table S2) But under either asymptotic procedure, Levene’s test was
slightly conservative. And CaoV and DGLMV were both slightly anti-
conservative under the standard procedure and conservative under the
RINT procedure.

Despite the variation in FPR control among the test-procedure
combinations, CaoV and DGLMV hadmore power to detect vQTL than
Levene’s test under all procedures. Specifically, under the well-calibrated
(empirical) procedures, CaoV and DGLMV had power in the range
[0.698, 0.721], while under those same well-calibrated (empirical) pro-
cedures, Levene’s test had power in the range [0.664, 0.665] (Table 3).

Thus, in the specific situations simulated here, the empirical
procedures of CaoV and DGLMV are the preferred vQTL tests in
the absence of BVH. The additional power of CaoV and DGLMV

relative to Levene’s test is consistent with the fact that they make
strong parametric assumptions that are exactly true in these simu-
lations and Levene’s test does not.

Testing for vQTL with BVH present: DGLMV outperforms Levene’s
test and CaoV: In the presence of BVH, there were three test-procedure
combinations with major departures from accurate FPR control
(Figure 3). CaoV under the standard procedure was drastically anti-
conservative with FPR of 0.135 (Table 3). DGLMV under both the
RINT and residperm procedures was drastically conservative with
FPR of 0.023 and 0.020, respectively. Additionally, DGLMV under
the standard procedure was moderately anti-conservative with FPR
of 0.058. The remaining test-procedure combinations accurately con-
trolled FPR, namely Levene’s test under all procedures, CaoV under the
RINT, residperm, and locusperm procedures, and DGLMV under the
locusperm procedure.

Of the tests that accurately controlled FPR, DGLMV under the
locusperm procedure was uniquely powerful, with power of 0.708,
while the others had power in the range [0.539, 0.576] (Figure 3 and
Table 3).

Direct interpretation of these results might lead one to consider
the trade-off between DGLMV-standard and DGLMV-locusperm.
DGLMV-locusperm requires considerable computational effort and
serves only to reduce the FPR from a modestly-inflated level of
0.058 to accurate control at 0.052. Application of the (computationally
non-intensive) DGLMV-standard, however, comes with a caveat: if
there were some additional, unknown (and therefore unmodeled)
BVH-driving factor, DGLMV-standard would be anti-conservative
anti-conservative–similar to CaoV-standard with BVH present. The
locusperm procedure, in contrast, ensures accurate FPR control
whether all BVH-driving factors are modeled (as in DGLMV) or
not (as in CaoV). DGLMV-locusperm therefore emerges as the most
robust test-procedure for vQTL mapping in the presence of BVH.

For each vQTL test-procedure combination, the AUC (Table S1),
standard error of the positive rate at a ¼ 0:05 (Table S2), QQ plots
illustrating the empirical FPR at each nominal FPR level (Figure S5),
and ROC curves illustrating the spectrum of trade-offs between avail-
able FPR and power (Figure S2) are provided in the Supplementary
Materials.

Testing mvQTL with BVH absent: CaoMV and DGLMMV similar:
Continuing the pattern from the vQTL tests, in the absence of BVH
most mvQTL tests accurately control FPR (Figure 1). The exceptions
are similar to the vQTL tests as well, with CaoMV-RINT slightly con-
servative and DGLMMV-standard slightly anti-conservative (Table 3).

The standard version of CaoMV and DGLMMV were similarly pow-
erful (Figure 4), both exceeding the power of the other mvQTL test-
procedures.

Testing mvQTL with BVH present: DGLMMV dominates CaoMV: In
the presence of BVH, CaoMV accurately controlled FPR with the RINT,
residperm, and locusperm procedures, whereas DGLMMV did so only
under the locusperm procedure (Figure 1).

Of the test-procedure combinations that accurately controlled FPR,
DGLMMV-locusperm was the most powerful with power of 0.790 as
compared to the others in the range [0.632, 0.650].

Aswith the vQTL tests, the DGLMMV-standard is attractive is terms
of computational effort and good statistical properties, but it is expected
to have drastically inflated FPR in the presence of any unmodeled
BVH-driving factor, similar to CaoMV-standard. DGLMMV-locusperm
therefore emerges as the most robust test-procedure for mvQTL
testing.

For each mvQTL test-procedure combination, the AUC (Table S1),
standard error of the positive rate at a ¼ 0:05 (Table S2), QQ plots
illustrating the empirical FPR at each nominal FPR level (Figure S6),
and ROC curves illustrating the spectrum of trade-offs between avail-
able FPR and power (Figure S3) are provided in the Supplementary
Materials.

In the presence of BVH, the rank-based inverse normal
transformation fails to correct anti-conservative behavior of
DGLMM and overcorrects that of DGLMV and DGLMMV: A con-
sistent feature of the simulations involving detection of variance effects,
whether vQTL ormvQTL, is that FPR control and power is affected, for
better or worse, by applying the RINT to the response.

In the presence of BVH,DGLMMunder the standard procedurewas
anti-conservative (FPR = 0.059 at a ¼ 0:05). The RINT procedure had
little efficacy in returning this test to accurate FPR control (FPR =
0.057).

In the case of vQTL detection in the presence of BVH, CaoV under
the standard procedure had a drastically inflated FPR (0.135) and the
RINT procedure slightly over-corrected it (FPR = 0.046). Similarly, the
RINT procedure disrupted DGLMV, which was modestly anti-conser-
vative under the standard procedure, causing overly conservative be-
havior (FPR = 0.023).

As always, in the presence of BVH, the mvQTL tests exhibited a
mixture of the patterns observed in mQTL tests and vQTL tests. Both
CaoMV and DGLMMV were anti-conservative under the standard pro-
cedure, illustrating their relations to CaoV and DGLMM respectively. In
the case of CaoMV, the RINT procedure corrected the FPR, but in in the
case of DGLMMV, it resulted in an over-correction into the realm of
over conservatism (FPR = 0.049 and 0.038 respectively).

In summary, theRINTprocedurewas unhelpful in the context of the
DGLMM: it did not repair the modest FPR inflation present under the
standard procedure. But, in the context of vQTL testing with BVH, it
had one useful and important property: pre-processing the phenotype
with the RINT, led to vQTL tests that were conservative rather than
anti-conservative, decreasing the probability of false positives at the
expense of false negatives.

Genomewide reanalysis of bodyweight in Leamy
et al. backcross
To understand the impact of BVHonmean and varianceQTLmapping
in real data, we applied both traditional QTLmapping, using SLM, and
mean-varianceQTLmapping, usingCao’s tests and theDGLM, to body
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weight at three weeks in the mouse backcross dataset of Leamy et al.
(2000).

Analysis with traditional QTL mapping identifies no QTL: We first
used a traditional, linear modeling-based QTL analysis, with sex and
father as additive covariates and genomewide significance based on
1000 genome permutations (Churchill andDoerge 1994). Although sex

was found not to be a statistically significant predictor of body weight
(p ¼ 0:093 by the likelihood ratio test with 1 degree of freedom), it was
included in the mapping model because, based on the known impor-
tance of sex in determining body weight, any QTL that could only be
identified in the absence of modeling sex effects would be highly ques-
tionable. Father was found to be a significant predictor of body weight
in the baseline fitting of the SLM (p ¼ 9:6 · 1025 by the likelihood ratio
test with 8 degrees of freedom) and therefore was included in the
mapping model.

No associations rose above the threshold that controls family-wise
error rate to 5% (Figure 5, green line). One region on the distal part of
chromosome 11 could be considered “suggestive”with FWER-adjusted
p � 0:17.

To test the sensitivity of the results to the inclusion/exclusion of
covariates, the analysis was repeated without sex as a covariate, without
father as a covariate, and with no covariates. No QTL were identified in
any of these sensitivity analyses.

Analysis with Cao’s tests identifies no QTL: The same phenotype was
analyzed with Cao’s tests, again including sex and father as mean
covariates, and using the genome permutation procedures described
in Statistical Methods were used to control FWER. No statistically
significant mQTL, vQTL, nor mvQTL were identified (Figure S10).

Analysis with DGLM-based tests identifies an mQTL: The same
phenotypewasanalyzedwith theDGLM-based tests. Inabaselinefitting
of theDGLM, sexwas found not to be a statistically significant predictor
of mean or residual variance (mean effect p ¼ 0:18, variance effect
p ¼ 0:22, and joint p ¼ 0:19 by the LRT with 1, 1, and 2 d.f.). But
father was found to be a statistically significant predictor of both mean
and variance (mean effect p ¼ 2:0 · 1027; variance effect p ¼
1:8 · 10211, and p ¼ 4:8 · 10214 by the LRT with 8, 8, and 16 d.f.).
Therefore, following the same reasoning as in the mean model de-
scribed above, both sex and father were included in the mapping model

Figure 1 Empirical false positive rate (FPR) of all tests and significance
assessment procedures at a nominal FPR of 0.05, as assessed through
simulation of non-associated loci and phenotypes both with and without
BVH. Dot indicates point estimate and line indicates 95% confidence
interval. The vertical line indicates the ideal empirical FPR of 0.05. Some
test-procedure combinations led to FPR outside the plotted range. In
such cases the FPR is written on the left edge of the plotting area if the
value was too low to plot, and the right edge if it was too high. An
un-zoomed version of this plot is available in Figure S7.

Figure 2 Empirical power of mQTL tests to detect mQTL under four
significance assessment procedures. Dot indicates point estimate and
line indicates 95% confidence interval. Darker gray rectangle indicates
the confidence band for the power of SLM with the standard
significance assessment procedure, the standard against which all
other test-procedures are compared.
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as covariates of both the mean and the variance. As with the other tests,
the genome permutation procedures described in Statistical Methods
were used to control FWER.

A genomewide significant mQTL was identified on chromosome
11 (Figure 5, blue line). The peak was at 69.6 cM with FWER-adjusted
p ¼ 0:011; with the closest marker being D11MIT11 at 75.7 cM with
FWER-adjusted p ¼ 0:016: Nonparametric bootstrap resampling, us-
ing 1,000 resamples (after Visscher et al. 1996), established a 90%
confidence interval for the QTL from 50 to 75 cM. This region overlaps
with the “suggestive” region identified in the traditional analysis.

By the traditional definition of percent variance explained, following
from a fitting of the standard linear model, this QTL explains 2.1% of
phenotype variance. Though, given the variance heterogeneity inherent
in the DGLM that was used to detect this QTL, this quantity is better
considered the “average” percent variance explained. The ratio of the
QTL variance to the sum of QTL variance, covariate variance, and
residual variance ranges from 1 to 6% across the population, based
on the heterogeneity of residual variance.

Understanding the novel QTL: The mQTL on chromosome 11 was
identified by the DGLMM test, but not by the standard linear model or
Cao’s mQTL test. The additional power of the DGLMM test over these
other tests relates to its accommodation of background variance het-
erogeneity (BVH).

Specifically, the DGLM reweighted each observation based on its
residual variance, according to the sex and F1 father of the mouse. This
BVH is visually apparent when the residuals from the standard linear
model are plotted, separated out by father (Figure 6).

Some fathers, for example fathers 2 and 7, appear to have offspring
with less residual variance than average, whereas others, for example
father 1, seem to have offspring with more residual variance than
average. The DGLM captured these patterns of variance heterogeneity,
and estimated the effect of each father on the log standard deviation of
the observations (Figure 7). Based on these estimated variance effects,

observations were upweighted (e.g., fathers 2 and 7) and downweighted
(e.g., father 1). This weighting gave the DGLM-based mapping ap-
proach more power to reject the null as compared with the SLM.

Other phenotypes: For brevity, we described in detail only the results of
the DGLM-based analysis of body weight at three weeks; but, of the eight
phenotypes fromthiscrossavailableontheMousePhenomeDatabase, the
mean-variance approach to QTL mapping discovered new QTL in four.
Five of the eight phenotypes— body weight at twelve days, three weeks,
and six weeks, as well as subcutaneous and gonadal fat pad thickness—
exhibited BVH due to father, and for each we performed both traditional
QTL mapping using the SLM and mean-variance QTL mapping using
the DGLM. This reweighting changed the results in three cases: For body
weight at three weeks (Figure S15) and six weeks (Figure S16), we iden-
tified one newmQTL and two new vQTL respectively. For subcutaneous
fat pad thickness, we discovered one mQTL and “undiscovered” one
mQTL (Figure S17). That is, after reweighting the observations based
on the observed variance of each father, one locus that was overlooked by
SLM was identified as an mQTL and one locus that was identified by
SLM as an mQTL was no longer found to have a statistically significant
association with the phenotype.

DISCUSSION
Since the recognition that variance effects can be attributable to indi-
vidual genes, a growing body of research has asked questions about the
prevalence of such effects (Huang et al. 2015), their evolutionary origins
(canalization, robustness), their ramifications (decanalization in dis-
ease, increased variation) (Gibson 2009; Freund et al. 2013; Lin et al.
2016), and how the identification of such genes can provide a signal of,
and thereby serve as a route to identify, higher order interactions such
as epistasis or GxE (Struchalin et al. 2010; Rönnegård and Valdar 2012;
Forsberg andCarlborg 2017). These studies have promoted detection of
variance heterogeneity as path to new biological discovery. But less
attention has been paid to this corollary: if a phenotype is subject to
variance-controlling factors, then, whether or not identifying those
factors is of direct interest, they will induce background variance het-
erogeneity that can affect inference of more standard targets, including
mean-affecting QTL. In other words, interest in identifying sources of
BVH may be of most interest to a subset of researchers, but interest in
accommodating it should be more widespread.

Figure 3 Empirical power of vQTL tests to detect vQTL under four
significance assessment procedures. Dot indicates point estimate and
line indicates 95% confidence interval. Darker gray rectangle indicates
the confidence band for the power of Levene’s test with the standard
significance assessment procedure, the standard against which the
other test-procedures are compared.

Figure 4 Empirical power of mvQTL tests to detect mvQTL under four
significance assessment procedures. Dot indicates point estimate and
line indicates 95% confidence interval. Darker gray rectangle indicates
the confidence band for the power of CaoMV with the standard signif-
icance assessment procedure, the standard against which the other
test-procedures are compared.
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Our simulation studies showed that modeling BVH when it is
present increases power to detect mQTL, vQTL and mvQTL. Our
reanalysis of the Leamy et al. dataset demonstrated that accommo-
dating BVH can lead to detection of mQTL that would otherwise be
overlooked.

In both cases, of the methods compared, the most powerful were
those based on the DGLM, with the most robust versions of those using
the locusperm significance procedure. These results should not be too
surprising. The DGLM was the only method examined that can
accommodate variance effects arising from both the locus and from
other covariates; and the locusperm method (and genomeperm, its
genomewide analog) is least reliant on parametric assumptions. We
would expect other methods that allow flexible modeling of covariate
effects on variance to be competitive in these regards, e.g., the recent
Bayesian hierarchical model of Dumitrascu et al. (2018).

Beyond advocating any particular method, however, our results can
beused todrawattention toanumberofmoregeneralpointsabout1) the
relationship between increased residual variance, observationweighting
and downstream inference; 2) how knowledge of variance effects can be
exploited in experimental design, analysis and reanalysis; 3) the sensi-
tivity of variance effect detection to distributional assumptions and how
this can be mitigated by strategies such as variable transformation or
permutation; and, 4) how to report quantitative genetic parameters
under heteroskedasticity.

Residual variance, weighting, and inference for mean
effect QTL
The additional power of mean-variance QTLmapping to detect mQTL
in general—and of DGLMM to detect mQTL in the presence of BVH in
particular—can be seen as deriving from how data are reweighted.
Consider heteroskedastic data modeled as yi � Nðmi;s

2=wiÞ,
with known weights w1; . . . ;wn and known baseline variance s2.

The log-likelihood can be written as ℓ ¼ const2WRSS=2s2, such that
the key quantity to be minimized in a maximum likelihood fit is

WRSS ¼
Xn

i¼1
wi
�
yi2mi

�2
  ;

theweighted residual sumof squares, that is, the squared discrepancies
between the observed phenotype yi and its predicted value mi,
weighted by wi. The weights therefore affect how much, relatively
speaking, each data point contributes to the likelihood: highly impre-
cise measurements, such as from individuals whose phenotypes are
expected to have high variance, have low weight and diminished
contribution, whereas as more precise measurements are correspond-
ingly upweighted. In the DGLM, the weight of each observation is
determined in the model-fitting process based on the phenotype, the
experimental covariates, and the QTL genotype. In the SLM, weights
can be specified, but they cannot be co-estimated with covariate and
QTL effects. The improvement of the DGLM over the SLM and CaoM
under BVH stems entirely from its greater ability to capture this
additional information, and thereby give more credence to phenotype
values that are more precise.

Wenote a related approach to correcting inference ofmean effects in
the face of heteroskedasticity not considered here is the use of hetero-
skedastic consistent covariance matrix estimators (HCCMEs) [Long
and Ervin (2000) and refs therein]. Also known as “sandwich” estima-
tors, these use estimated residuals from the SLM to characterize
heteroskedasticity empirically and thereby estimate adjusted, hetero-
skedastic-consistent versions of the effect standard errors. Importantly,
HCCMEs do not require the source of heteroskedasticity to be identi-
fied, and they have seen recent use in genetic association [e.g., Barton
et al. (2013); Rao and Province (2016)]. However, this comes at a cost:
when a variable that does predict heteroskedasticity can be identified,

Figure 5 FWER-controlling association statistic at each genomic locus for body weight at three weeks. The linear model (green, “traditional”)
does not detect any statistically-significant associations. The mQTL test takes into account the heterogeneity of both mean and variance due to
which F1 male fathered each mouse in the mapping population and detects one mQTL on chromosome 11.

Figure 6 Residuals from the standard linear
model for body weight at three weeks, with sex
and father as covariates, stratified by father. It is
evident that fathers differed in the residual
variance of the offspring they produced. For
example, the residual variance of offspring from
fathers 1 and 2 is less than that of offspring from
fathers 8 and 9. Here, points are colored by their
predicted residual variance in the fitted DGLM
with sex and father as mean and variance
covariates.
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HCCMEs will tend to be inefficient compared with a model-based
estimator (Wakefield 2013), such as the DGLM.

Implications for experimental design, analysis
and reanalysis
The possibility that some individuals could be predictablymore variable
than others has clear implications for experimental design. A key
parameter in the design of experiments is the number of replicates,
typically specified toprovideadequateprecisionof, and therebypower to
detect, an estimated effect. But foreknowledge that residual variancewill
differ for certain groups suggests a more nuanced approach that
explicitly weighs replicates against intrinsic variability.

For example, when designing an experiment on a population that
happens to have a known, segregating vQTL that is not itself the focus of
interest but would induce BVH, it may be preferable to allocate a
disproportionate share of the replication to individuals in the high-
variability genotype class. In such cases, it then becomes additionally
helpful to understand at what level(s) the heterogeneous variance
manifests. Specifically, increased variability could arise from greater
between-individual variation or greater within-individual variation [cf
more levels of variability described in Table 1 of Rönnegård and Valdar
(2011)]; whereas the between-individual case warrants additional bi-
ological replicates, the within-individual case could be addressable (po-
tentially more cheaply) with additional technical replicates.

Alternatively, the recognition that some individuals are predictably
high variance may be a reason to exclude them entirely, or, more
generally, toopt for conditionsandpopulationsubsets forwhichresidual

variance is predicted to be minimal. If such a variance-minimizing
population canbe achievedwithout changing the genetic effects present,
it would have an improved signal-to-noise ratio and provide better
power to detect genetic effects.

Amore standardsituation is that a vQTL(orotherBVHfactor) is not
recognized until the experiment is first analyzed. In this case, it would
make sense to perform a re-analysis, with the vQTL included as a
variance-affecting covariate. Doing so should increase power to detect
both mQTL and other vQTL.

vQTL mapping: pros and cons of the rank inverse
normal transformation

The presence of BVH can be disruptive to a test for a vQTL. A simplistic
test compares a heteroskedastic alternativemodel with a homoskedastic
null. BVH confuses the comparison by making the true null hetero-
skedastic. In doing so, it increases the false positive rate for asymptotic
tests that disregard BVH and reduces power when FPR is empirically
controlled (see, e.g., CaoV results in Table 3).

In this context it is therefore interesting to consider the crude—but
often used—device of the rank inverse normal transformation. The
RINT reshapes away any kurtosis (fatter tails), a key signature of het-
eroskedasticity, without any reference to its source. As such, it is logical
that in the detection of vQTL it would have both beneficial and harmful
properties.

In the case where there is no known driver of BVH, represented by the
simulations examining CaoV, the RINT procedure acts as an insurance
policy: if there truly is noBVH, the test suffers amodest decrease in power;
but if there truly is BVH from an unknown source, it averts the drastic
FPR inflation under the standard (i.e., non-empirical) p-value procedure.

In the case where researchers are confident that, after correcting for
known BVH drivers, the residuals are homoskedastic (represented by
the DGLMV simulations), the RINT procedure is unnecessary, costing
power with its conservatism in the absence of BVH and paradoxically
creating even more conservative behavior in the presence of BVH.

The aforementioned disadvantages of RINT, however, assume the
phenotype datahas anunderlyingnormal distribution, either as givenor
after a deducible transformation [e.g., via the Box-Cox procedure or
similar; (Box and Cox 1964)]. When the data are highly non-normal,
both the RINT and the locusperm procedure would provide valid in-
ference, and perhaps the most robust approach would be to use the two
in combination. Nonetheless, where normality approximately holds,
whether as given or after a simple transformation, we strongly prefer
the locusperm procedure without RINT: across all simulation scenarios
it exhibited at worst slight conservatism when applied to DGLM-based
tests and represents a useful step toward FWER control.

Permutation schemes for other populations

Our preferred permutation scheme, locusperm (or its genomewide
equivalent, genomeperm), is applicable to populations in which geno-
types under the null are exchangeable. As such, it holds not only for F2
and backcrosses but also, for example, in approximately equally-related
recombinant inbred line panels such as the Collaborative Cross and
other similar replicable multiparent populations. For example, in the
(mQTL) study of Mosedale et al. (2017), the use of locus genotypes (or
genotype probabilities) would simply be replaced by founder haplo-
types that could then be randomly exchanged across lines.

In non-exchangeable populations, however, such as those requiring
polygenic randomeffect terms [e.g., Kennedy et al. (1992)], although the
DGLM could be applied via its random effects generalization, DHGLM
(Felleki et al. 2012), the permutation scheme may need revision. In

Figure 7 The predictive mean and standard deviation of mice in the
mapping population based on father and genotype at the top marker,
D11MIT11 on chromosome 11. The genotype effect, illustrated by the
colored ribbons is almost entirely horizontal, indicating a difference in
means across genotype groups but no difference in variance,
consistent with the identification of this QTL as a pure mQTL. The
father effects, illustrated by the spread of colored crossbars, have both
mean and variance components. For example, father 1 (red) has the
highest predictive mean and lowest predictive standard deviation. His
offspring were upweighted in the QTL analysis based on their low
standard deviation. Father 9 (pink) has an average predictive mean and
the highest predictive standard deviation. His offspring were down-
weighted in the QTL analysis based on their high standard deviation.
Note: the effect of sex on phenotype mean and variance was
modeled, then marginalized out for readability.
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particular, a permutation scheme in which all permutations are equally
likely may not comport with a reasonable null, and it may be more
appropriate to allocate higher probabilities to permutations that pre-
serve overall genetic similarity (Abney 2015; Roach and Valdar 2018;
Berrett et al. 2018). Althoughwe not have a specific solution, we suspect
that the necessity of such revisions, at least for the DGLMV test, will
depend on the extent to which the observed heteroskedasticity is
polygenic.

Percent variance explained

Variance heterogeneity complicates the notion of percent variance
explained (PVE) by a QTL. Assuming the QTL has the same effect
on the expected value of the phenotype of all individuals, it will explain a
larger percent of total variance for individuals with lower than average
residual variance, andvice versa for individualswithhigher than average
residual variance. In light of this observation, the percent variance
explained can either be reported as “average percent variance
explained” or can be calculated for some representative sub-groups.
For example, if there is variance heterogeneity across sexes, it would
be reasonable to report the PVE of a QTL for both males and females,
or if a vQTL is known to be present elsewhere in the genome, report the
PVE for each vQTL genotype as in Yang et al. (2012).

Guidelines for detecting and QTL mapping in the
presence of BVH

To select the right test and procedure to assess significance, it is
important to establish whether there is any BVH present. We advocate
fitting the DGLMwith all potential BVH drivers as variance covariates,
then including any that are statistically significant as variance covariates
in themappingmodel to improvepower todetectQTL. Then, given that

1. The DGLM-based tests dominate all other tests in the presence of
BVH,

2. the locusperm procedure accurately controls the FPR of the
DGLM-based tests in the presence of BVH, whether the source
is known or not, and

3. the locusperm procedure can be extended into the genomeperm
procedure to control FWER,

we advocate for the analysis of experimental crosses that exhibit BVH
with the three DGLM-based tests (DGLMM, DGLMV, and DGLMMV)
and, where the individuals in the population are exchangeable (as in an
F2 or backcross) or where partial exchangeability can be suitably iden-
tified [e.g., see (Churchill and Doerge 1994; Zou et al. 2006; Churchill
and Doerge 2008)], the use of our described genomeperm procedures,
which permute the genome in selective parts of the model, to assess
genomewide significance.

Because thisprocedure involves three families of tests rather thanone
family as would be typical with an SLM-based analysis, an additional
correction may be desired to control experiment-wise error rate.
DGLMM and DGLMV are orthogonal tests (Smyth 1989), but
DGLMMV is neither orthogonal nor identical to either, so the effective
number of families is between two and three. One reasonable, heuristic
approach to control experiment-wise error rate is simply to lower the
acceptable FWER, e.g., replacing the standard 0.05 with 0.02.

Conclusion

Insummary,wedemonstrate the effect ofBVHonQTLmappingofboth
mQTL and vQTL, and the value of accommodating it using the DGLM.
In doing so, we propose a standard protocol for mappingmQTL, vQTL
and mvQTL in standard genetics crosses.
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APPENDIX

CALCULATION OF AN ADDITIVE EFFECT TO EXPLAIN A GIVEN PROPORTION OF TOTAL VARIANCE IN AN F2
INTERCROSS
The variance attributable to a genetic factor with alleles (AA, AB, BB) at frequency (0.25, 0.5, 0.25), additive effect a and no dominance effect is:

Va ¼ 1
4
ð2aÞ2 þ 1

2
ð0Þ þ 1

4
ðaÞ2 ¼ 1

2
a2:

For a genetic factor that explains a fraction p of total phenotype variance:

Va ¼ pVy ¼ p
�
Va þ s2� ¼ ps2

ð12 pÞ  :

Combining and solving for a gives a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2=ð12 pÞp

.
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