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ABSTRACT

Robert Wallace Corty: Variance Heterogeneity in Genetic Mapping
(Under the direction of William Valdar)

Genetic mapping is a process by which researchers seek to identify genetic factors that influence

a trait of interest. Such efforts typically focus on those that either increase or decrease the trait of

interest, and assume that the variance of the trait is constant across all individuals. I develop and

apply statistical methods that challenge that assumption in two ways. First, I consider the situation

where non-genetic factors influence trait variance, which I term “background variance heterogeneity”.

Though they are not of immediate interest in a genetic mapping study, they can be exploited to

align observations’ weights with their precisions. Second, I consider the situation where genetic

factors influence trait variance, which I term “foreground variance heterogeneity”. Such factors are

of immediate interest because they represent novel discoveries that could be missed by standard

analyses.

I consider both foreground and background variance heterogeneity as they relate to linkage

disequilibrium mapping in exchangeable mapping populations. I report three novel genetic factors

with strong evidence that they influence medically-important traits in the mouse model system.

Finally, I consider the background variance heterogeneity as it relates to association mapping in

non-exchangeable populations. I report a mathematical advance that makes possible the fitting

of a statistical model that accommodates background variance heterogeneity in non-exchangeable

populations.
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Happy families are all alike;
every unhappy family is unhappy in its own way.

— Leo Tolstoy, opening line of Anna Karenina,
on happiness-dependent variance heterogeneity

I’m convinced the tuxedo was invented by women. . . “Well,
they’re all the same; we might as well dress them all the same.”

— Jerry Seinfeld,
on ignoring variation
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CHAPTER 1

Introduction

1.1 Genetic Mapping

Genetic mapping is a scientific endeavor that has elucidated the genetic underpinnings of

hundreds of conditions relevant to human health and disease, both directly in humans (MacArthur

et al., 2017) and in model organisms (Grubb et al., 2014), as well as many commercially-important

traits in crops and livestock. There are, broadly speaking, three approaches to genetic mapping,

which I will discuss below. They are united in their goal and the general process by which they seek

to achieve it.

All approaches to genetic mapping involve the collection of phenotype and genotype information

on a population of organisms and a statistical analysis to test for associations between the phenotype

and each measured, polymorphic locus of the genome. This endeavor is motivated by the belief

that the vast majority of the genome, say greater than 99%, does not have any appreciable effect

on the phenotype, so a successful genetic mapping experiment allows researchers interested in the

phenotype to focus their efforts on the small section of the genome that does have an effect. Thus,

a successful genetic mapping effort results in a partition of the genome into a large part with no

appreciable effect on the trait of interest, and a small part believed with a high degree of certainty to

influence the phenotype.

The three general approaches to genetic mapping are: 1. linkage analysis, 2. linkage disequilib-

rium mapping, and 3. association mapping. I’ll briefly review these approaches and some examples

of how each has been productively applied.

Linkage Analysis is most useful for traits where one or a few genetic factors are expected to exert a

large effect (Elston and Stewart, 1971; Haseman and Elston, 1972). It is based on a large collection

of families with a few individuals per family, where each family must have at least one affected

and one unaffected individual and everyone has been genotyped across a sparse panel of markers.

1



Examples of successful applications of linkage analysis are Mendelian disease phenotypes like

Duchenne muscular dystrophy, (Brown et al., 1985; Murray et al., 1982) cystic fibrosis (Tsui et al.,

1985; Wainwright et al., 1985; White et al., 1985) and ataxia-telangiectasia (Gatti et al., 1988). In

the last decade, as denser marker panels have become available and many of the high-prevalence,

near-Mendelian traits have been mapped, linkage analysis has receded in prominence.

Linkage disequilibrium mapping involves an experimental population of organisms where the

pattern of descent from a reference population can be inferred. For that reason, it is only possible

in model organisms, livestock, and some crops — but never in humans. Strengths of this approach

include the tight control of environmental exposures and the opportunity to deeply and invasively

measure phenotypes. Two of the most classic designs, the F2 intercross and backcross, mimic the

pedigrees of human linkage mapping, but rather than using many families with a few individuals per

family, they create a single family with hundreds of siblings (Lynch and Walsh, 1998; Lander and

Green, 1987; Lander and Botstein, 1989). Because these designs restrict the total genetic variation to

only two parental haplotypes, rather than the vast number of haplotypes represented in a collection

of human families, they are able to detect smaller effects and are not restricted to analyze mono- or

oligo-genic traits in the way that linkage analysis is.

Modern efforts toward model organism LD mapping have made prominent use of more elab-

orate breeding designs, most prominently multi-parental outbred populations (Ghazalpour et al.,

2012; Svenson et al., 2012) and multi-parental genetic reference populations (The Complex Trait

Consortium, 2004; MacKay et al., 2012; King et al., 2012) as well as in commercially-important

crops (McMullen et al., 2009; Bandillo et al., 2013). These designs use a larger number of parental

haplotypes and therefore explore a larger space of possible genetic effects than classic designs like

F2’s and backcrosses. In this way, multi-parental populations designed for LD mapping strike a

middle ground between classical designs and association analysis, which I discuss below.

Association mapping (GWAS) is based on a large population of individuals with no particular

genetic relationship. Because no breeding is required, it can be conducted in human populations. It is

most appropriate for traits where many genetic factors are thought to exert an effect, like body mass

index (Speliotes et al., 2010; Locke et al., 2015) and height (Allen et al., 2010; Wood et al., 2014)

and psychiatric conditions like schizophrenia (Ripke et al., 2014) and depression (of the PGC et al.,
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2017). Each genetic locus is tested for association with the phenotype after a correction is made for

global genetic similarity between individuals (Lippert et al., 2011; Zhou and Stephens, 2012).

Association mapping in model organisms uses a panel of inbred organisms with no particular

genetic relationship to conduct a study similar to a human GWAS. This study design combines the

strengths of model organism experiments (the tight control of environmental exposures and the ability

to make invasive measurements) with the ability to observe replicates from each genome (Payseur

and Place, 2007; Kang et al., 2008; Kirby et al., 2010). One important strength of a study design that

allows multiple observations of the same genotype is that it allows for very precise measurement of

the average phenotype that results from a given genotype because that genotype can be observed

arbitrarily-many times. Additionally, it allows for direct quantification of environmental variance,

which is confounded with genetic variance in any population without genetically-identical individuals

(Falconer, 1965; Lynch and Walsh, 1998).

Across all these approaches to genetic mapping, the goal remains the same — to identify genetic

loci where allelic variation correlates with phenotype variation.

1.2 Variation and Variance

We can say that we have observed “Variation” in some quantity when we have observed at

least two different values for that quantity. Without phenotype variation, no analysis of any kind

is possible, genetic or otherwise. Imagine a QTL mapping study where a tremendous amount of

genotypic variation was measured, but, by chance, all individuals in the mapping population have

the same phenotype value to measured precision. Realistically, the problem in such a study is that

we did not measure the phenotype to sufficient precision — maybe the scale we used to measure

mouse bodyweight was only accurate to the nearest pound, or maybe the phenotype is a molecular

phenotype for which the state-of-the-art measurement procedure cannot differentiate between the

highest and lowest values in our population. But more theoretically, given a set of observations

without any variation, there can be no attempt to correlate it with variation in any other quantity, be

they other phenotypes, environmental exposures, or genetic factors.

Analogously, for any genetic locus where all individuals in the mapping population have the

same allele, no genetic mapping study can hope to identify an association. This statement is quite
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different from a mechanistic assessment that determines the gene products of this locus are irrelevant

to the phenotype of interest; no such assessment can be made. Genetic mapping is fundamentally

a statistical, rather than mechanistic process, simply testing for correlations between phenotype

variation and allelic variation.

The above discussion considered variation as a binary quantity; it’s either present or absent. But

there are a variety of measures that can be used to quantify variation. Some examples include the

range, the interquartile range, the standard deviation, the mean absolute deviation, and the variance.

This dissertation deals almost exclusively with the variance because it has the salutary property that

the sum of the variance attributable to each individual factor in a regression analysis is equal to the

variance of the response (the phenotype in genetic applications). Put simply the variance of a sample

of numbers is the sum of the squared differences between each number and the mean. For a large

sample of numbers, this quantity accurately estimates the variance of the random process by which

the numbers were generated.

At times, this dissertation also considers the standard deviation, which is simply the square root

of the variance. The standard deviation has the property that it is on the same scale as the phenotype

itself, and is therefore straightforwardly interpretable.

1.3 Sources of Variance

It is important to recognize all potential sources of variance in a population in which a genetic

mapping study will be conducted. Understanding genetic parameters such as broad sense and

narrow sense heritability, the percentage of variance explained by aggregate additive, dominance, and

epistatic effects yields valuable insights into the “genetic architecture” of the trait. Understanding

the effect of sex, bodyweight, and nuisance covariates such as housing, diet, and experimenter can

help scientists design more efficient experiments (Nettleton, 2006; Datta and Nettleton, 2014). I’ll

begin by reviewing sources of variance in measurements made on a single organism. As discussed

previously, in the absence of any genetic variation, there can be no prospect for genetic insight. I

continue with a review of sources of variance in measurements of multiple organisms, keeping in

mind that the single-organism sources of variance are still present.
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1.3.1 Measurements on a Single Organism

There are surprisingly many sources of variance when multiple measurements are made, even on

a single organism.

When multiple measurements of a given trait are made on a single individual at the same time,

the only source of variance is technical variance (Rönnegård and Valdar, 2011). An example of

this type of measurement is the collection of a single blood sample from a mouse, which is split it

into three aliquots and the mRNA content of each aliquot is analyzed independently (Marioni et al.,

2008).

When the a phenotype is measured on one individual at multiple times, temporal fluctuation is

a potential source of variance. This temporal fluctuation comes in two “flavors”. First, the value

of the phenotype of the individual may change over time. Second, the measurement device may

change over time. Effects of this type are often called “batch effects”. An example of this type of

measurement is the weighing of each experimental mouse each day of a multi-day experiment (Gray

et al., 2015).

When the same organism is observed in multiple different “macro-environments”, that variation

in macro-environment can contribute variance to the phenotype. The term “macro-environment” is

used here to signify that the researcher has intentionally introduced an environmental effect. It is

used in contrast to the “micro-environment”, which is discussed below. The same individual could be

exposed to multiple different macro-environments at different times in its life, in which case temporal

variation would potentially be in play, or samples of the organism can be extracted and treated with

different environmental factors at a single time point.

When multiple, theoretically-identical structures are measured on a single individual at a single

time, “fluctuating asymmetry” is a potential source of variance (Palmer and Strobeck, 1986). An

example of this type of experiment is be measurement of the left and right kidney weight of mice

(Leamy et al., 2000, 2002). There are valid criticisms to be made about many specific measurements

that are said to reflect fluctuating asymmetry. For example, in the case of the left and right kidney in

a mouse, some difference in size might be expected due to the right kidney being crowded by the

liver during development. But the general concept, that of assessing the extent to which multiple

theoretically-identical phenotypes are expressed identically in a given organism, is an important
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contribution to understanding the totality of sources of variance in a phenotype, for phenotypes where

it is applicable.

A further source of variance in measurements of theoretically-identical structures from the same

organism is developmental stochasticity. This term refers to the concept that micro-environmental

perturbations during the developmental process can “fix” larger changes later in life, similar to a

“butterfly effect” of developmental biology.

1.3.2 Measurements on Multiple Organisms

When multiple organisms are observed, additional layers of variance are possible, depending on

the genetics of the organisms (Table 1.2).

The experimental design that most limits the variance amongst multiple organisms is when all

the organisms are genetically identical. In the observation of multiple genetically-identical organisms,

developmental stochasticity, is a potential source of variation (Fraser and Schadt, 2010). This same

source of variance can also be referred to as “micro-environmental variance” (Hill and Mulder, 2010).

This type of variance captures all the myriad, subtle exposures that each organism experiences, but

which no researcher can hope to standardize. For example, the precise living temperature a mouse

experiences depends slightly on where its cage is relative to the air vents, the amount of bedding

depends on exactly how much the technician happened to grab when filling the cage, and uncountably

many more such small effects could be imagined. Outside of experimental designs that make use

of inbred organisms, it is impossible to directly estimate the contribution of micro-environmental

variance to phenotype variance.

Consider a population of organisms that is not genetically identical in a global sense, but is

genetically identical at one specific locus. A potential source of phenotype variance in such a

population is interactions between the locus and factors in which the organisms do vary, such as

other genetic loci and micro-environmental exposures. The fact that all the organisms have the same

allele at the focal locus precludes any direct contribution from that locus to the phenotype variance.

But, the locus may interact with polymorphisms elsewhere in the genome to make a contribution

to the phenotype variance through GxG or may interact with micro-environmental factors to make

a contribution through GxE (Falconer and Mackay, 1995; Struchalin et al., 2010; Rönnegård and

Valdar, 2011).
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Consider next a population of organisms where there are multiple alleles present at the focal

locus — one could imagine the same population as the above paragraph but simply focus on a

different locus. Here, all the same effects described above could be present, and additionally a

marginal effect of the locus could contribute to phenotype variance. In fact, this is the reasoning that

underlies the vast majority of QTL mapping efforts. Any genetic locus where researchers conclude

with high statistical certainty that the proportion of phenotype variance explained by the locus is not

zero constitutes a QTL (Broman and Sen, 2009; Broman, 2010).

Having considered thoroughly many possible sources of variance, I turn next to the concept that

not all organisms are influenced by them to equal extent.

1.4 Variance Heterogeneity

Conceptually, any of the sources of variance described above could contribute more or less to any

one measurement and any factor could determine how much a given source of variance contributes.

This situation is termed “variance heterogeneity”. The measurements could all end up with the same

variance, and it’s simply partitioned differently according to sources. Or they could end up with

different total variance.

Despite this reality, most genetics studies impose strong assumptions about the nature of pheno-

type variation. They use statistical models that assume that each measurement has an equal quantity

of variance from each source. To put a concrete example to that statement, the statistical analysis

most commonly used in LD mapping of an F2 intercross or backcross assumes that the residual

variance is constant across all individuals. In this study design, the “residual variance” is the sum of

all within-individual sources of variance described above, the genomic variance arising from genetic

factors other than the locus currently being tested (which I term the “focal locus”), locus-by-genome

interactions, and locus-by-micro-environment interactions. So the assumption is equivalent to the

belief that, across all organisms in the mapping population, that sum is equal.

Other study designs that are often analyzed with the assumption of homogeneous variance

include pedigree analysis to determine breeding values and heritability, inbred strain association

mapping, and human GWAS.
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Despite the pervasiveness of these “constant variance” assumptions, there is ample evidence

that these sources of variance do not affect each measurement equally. Rather this assumption

arises out of analytic convenience. Statistical models that make use of the homogeneous variance

assumption have been more straightforward to develop and tend to have faster performance than

more complex models that allow for variance heterogeneity. This situation formed the central tension

of my dissertation work. It was my belief that the analysis of many genetic study designs could

be improved by using statistical models that recognize, and in some ways even capitalize on,

variance heterogeneity.

1.4.1 Evidence of Variance Heterogeneity

Why might measurements from one organism have more variance than measurements from

another organism? If one device is used for one organism and another device is used for another,

heterogeneity of measurement error could result in heterogeneity of phenotype variance. Observations

of this type have been made in the field of human blood pressure management (Labarthe et al., 1973;

Ataman et al., 1996; O’Brien, 2001).

As another example, genetic factors could influence phenotype variance by influencing sensitivity

to variation in the micro-environment or influencing the extent of GxG or GxE variance. Family-

based designs cannot disentangle these two sources of variance, but they can document their presence.

For example, genomic effects on phenotype variance have been documented in cattle (Visscher and

Hill, 1992; Mulder et al., 2008; Fasoula, 2012), dairy cow (Clay et al., 1979), pigs (Ibáñez-Escriche

et al., 2008), chickens (Rowe et al., 2006), snails (Ros et al., 2004).

Other studies have documented a heterogeneity of phenotype variance across inbred strains,

which can only be caused by differences in micro-environmental variation. Theses studies have

documented this phenomenon in Drosophila melanogaster (Mackay and Lyman, 2005; Mackay,

2014), Arabidopsis thaliana (Hall et al., 2007), and crops (Walsh, 2017).

Early theoretical work focused on the notion that organisms with one allele at a locus might all

have a similar phenotype, while organisms with the other allele might have very different phenotypes,

despite tremendous variation in the rest of the genome in both groups and termed this phenomenon

“canalization” (Waddington, 1942, 1959). This work has been extended to include a population genetic

theory of how it could come about (Wagner et al., 1997; Gibson and Wagner, 2000; Meiklejohn
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and Hartl, 2002). It has been related to the concept of “modularity” (Wagner et al., 2007), of

“developmental constraint” (Pavličev and Cheverud, 2015). The original concept is now referred to as

“robustness” (Kitano, 2004; Felix and Barkoulas, 2015; Yadav et al., 2015; Fraser and Schadt, 2010)

as well as “capacitance” (Pettersson and Carlborg, 2015; Queitsch et al., 2002). Usefully, the concept

of robustness is divided into environmental robustness and genomic robustness (Fraser and Schadt,

2010), where the former refers to heterogeneity of locus-by-E variance and the latter to heterogeneity

of locus-by-G variance.

1.5 QTL Mapping in the Presence of Variance Heterogeneity

Given the limited focus of the genetics community on variance heterogeneity, despite its seeming

ubiquity, I sought to assess the ways in which it could damage QTL mapping efforts, through false

positive or false negative results, and whether there were ways in which the presence of variance

heterogeneity could actually strengthen genetic mapping efforts.

Quantitative trait locus (QTL) mapping in both model organisms and humans has traditionally

focused on finding regions of the genome whose allelic variation influences the phenotypic mean.

In the past decade, a number of studies and proposed methods have broadened the scope of QTL

mapping to consider effects on the phenotypic variance (Paré et al., 2010; Rönnegård and Valdar,

2011; Hulse and Cai, 2013). These studies and their findings have raised interesting questions and

possibilities about underlying biology, evolutionary trajectory, and potential utility in agriculture

(Wagner et al., 1997; Dworkin, 2005; Mulder et al., 2015). Nonetheless, consideration of variance

effects — whether as the target of inference or as a feature of the data to be accommodated — has

thus far remained outside of routine genetic analysis. This may be in part because QTL effects

on the variance are sometimes considered of esoteric secondary interest, intrinsically controversial

in their interpretation due to considerations of data scale (Sun et al., 2013; Shen and Ronnegard,

2013), or a priori too hard to detect (Visscher and Posthuma, 2010). But it is also likely to be in

part because familiar software and procedures are currently lacking, and because the advantages of

modeling heterogeneous variance, even when targeting QTL effects on the phenotypic mean, remain

under-appreciated and largely undemonstrated.
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The predominant approach to QTL mapping in model organisms, the focus here, considers each

genetic locus in turn, using a standard linear model (SLM) to regress the phenotypes of the mapping

population on their genotypes or their inferred genotype probabilities (Lander and Botstein, 1989;

Haley and Knott, 1992). This SLM-based approach is primarily able to detect genomic regions

containing a subset of genetic factors of interest — those that drive heterogeneity of phenotype mean.

Despite this limited scope, however, its use is widespread due to its ease of use, the straightforward

interpretation of its detected QTL, its historical importance in the fields of agricultural and livestock

genetics, and the fact that many genetic factors truly do influence the expected value of phenotypes.

Indeed, SLM-based interval mapping has yielded important insights on commercially- and medically-

important traits across many organisms for many years.

The goal of QTL mapping, however, is much broader — to identify genetic factors that influence

the phenotype in any way. For example, a genetic factor that influences the sensitivity of the

phenotype to micro-environmental variation through a collection of what might be called a locus-

by-E interactions is of interest whether the identity of the micro-environmental factors is known or

not, but unless it also affects the mean it is undetectable by the SLM. Similarly, a genetic factor that

influences the phenotype through many epistatic interactions (a collection of locus-by-G effects), but

has an average effect near zero is unlikely to be detected by the SLM. Neither of these important

goals, however, was the original motivation for seeking to detect genetic loci that influence phenotype

variance. The original motivation was to lower the dimensionality of the search space for large

locus-by-locus interactions (Paré et al., 2010), by searching first for variants that influence the

variance and then searching for interaction effects between those loci and the rest of the genome.

Such QTL that influence phenotype variance are often termed “vQTL”. The goal of detecting vQTL

and other more exotic types of QTL effects motivated the development and application of statistical

tests that can detect genetic effects on other aspects of the phenotypic distribution, most notably the

phenotype variance.

A number of statistical models and methods have been developed or adapted to identify associ-

ations between genotype and phenotypic variance. These include: Levene’s test (Struchalin et al.,

2010), the Fligner-Killeen test (Fraser and Schadt, 2010), Bartlett’s test (Freund et al., 2013), the

double generalized linear model (DGLM) and similar (Rönnegård and Valdar, 2011; Cao et al., 2014),

and a host of two-step procedures that involve computing measure of variance for each individual and
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testing that quantity for relation to the tested locus (Brown et al., 2014; Ayroles et al., 2015; Forsberg

et al., 2015). Tests have also been developed to detect genotype associations with arbitrary functions

of the phenotype, for example higher moments. These include a variant of the Komolgorov-Smirnov

test (Aschard et al., 2013) and a semi-parametric exponential tilt model (Hong et al., 2016). The

additional flexibility of these latter models makes them promising — a genetic factor that influences,

e.g., the kurtosis of a phenotype should be of interest — but at present neither can accommodate

covariates and the flexibility that affords them the ability to detect higher order effects brings with it

a decreased power to detect mean and variance effects.

Efforts to identify vQTL have gathered steam in recent years. A few dozen vQTL have been

reported, spanning Arabidopsis thaliana (Jimenez-Gomez et al., 2011; Shen et al., 2012; Forsberg

et al., 2014), flowers (Lee et al., 2014), dairy cows (Fikse et al., 2012), Drosophila melanogaster

(Ayroles et al., 2015; Huang et al., 2015), layer chickens (Wolc et al., 2012), maize (Ordas et al.,

2008), mouse (Gray et al., 2015), and yeast (Nelson et al., 2013; Ziv et al., 2017; Forsberg et al.,

2017). In at least two cases, researchers have identified vQTL and then gone on to identify specific

interactions that caused the appearance of that vQTL (Huang et al., 2015; Brown, 2017), one of the

original stated goals of vQTL analysis.

The existence of a vQTL, or indeed any factor affecting the variance has implications regarding

statistical genetic analyses, both those targeting variance effects and those targeted mean-affecting

QTL (hereafter, “mQTL”), and these implications have been relatively unexamined.

In particular, if a genetic (or other) factor influences phenotype variance then it follows that

examination and testing of any other QTL effect — for example, that of a QTL elsewhere in the

genome — must occur against a backdrop of systematically heterogeneous residual variance. The

presence of this “background variance heterogeneity” (BVH) when testing for a (foreground) effect

simultaneously presents analytic challenges and opportunities, not only for mapping vQTL but also

the validity of studies detecting mQTL.

The impact of BVH on mapping mQTL can be thought of as a disruption of the natural observa-

tion weights: The SLM assumes the phenotype of every individual is subject to equal noise variance

and therefore equal weight; but if it is known that some individuals’ phenotypes are inherently less

noisy — due to BVH induced by either a vQTL or other factors such as sex, housing, strain or

experimenter — then those data should be upweighted, and this would lead to a more powerful test

12



for mQTL detection. Conversely, giving equal weight to subgroups of the data that are inherently

noisier than average has the potential to leave outliers with overmuch influence on the regression,

increasing the potential for false positive mQTL detections A case in point is when an mQTL also

has variance effects: here the effects on the variance are a type of proximal BVH, and modeling

them explicitly improves ability to detect effects on the mean, as in chapter 3. Knowledge and

appropriate modeling of variance heterogeneity therefore has important implications for making

mean-controlling QTL studies sensitive, robust and reproducible.

The impact of BVH on detection of foreground vQTL is more subtle. Parametric methods to

identify vQTL typically pit heterogeneous variance alternative models against a homoskedastic,

normally distributed null. However, under BVH the null model is not homoskedastic — it is a scale

mixture — and this risks the null being rejected too readily. BVH could therefore lead to an inflated

vQTL false positive rate.

If BVH is disruptive to QTL mapping generally, it is potentially valuable to incorporate it into

the QTL mapping model when its source is known, and to use robustifying techniques to protect

against it when its source is unknown. Accommodating BVH of known source is most naturally

achieved through modeling covariate effects on the variance, something that is straightforward

with the DGLM of Rönnegård and Valdar (2011) but not currently with other proposed methods.

Protecting BVH when its source is unknown is less obvious, but since the threat manifests through

sensitivity to distributional assumptions, natural contenders include side-stepping such assumptions

via non-parametric approaches, e.g., permutation testing, or reshaping the distribution prior to

analysis through variable transformation. Both have been considered in the vQTL context, with

permutation used in Hulse and Cai (2013) and Yang et al. (2012) and transformation in Rönnegård

and Valdar (2011), Yang et al. (2012), Sun et al. (2013), and Shen and Carlborg (2013), but not

specifically for controlling vQTL false positives in the presence of BVH.
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CHAPTER 2

Mean-Variance QTL Mapping on a Background of Variance Heterogeneity 1

2.1 Introduction

Here we examine the effect of modeled and unmodeled BVH on power and false positive rate

when mapping QTL affecting the mean, the variance or both. In doing so we:

1. Develop a robust, straightforward procedure and software based on the DGLM that can be

used for routine mQTL and vQTL analysis;

2. Compare alternative proposed methods for mQTL and vQTL analysis;

3. Show how incorporating BVH can improve power for detecting mQTL and vQTL;

4. Show how sensitivity to model assumptions can be rescued by variable transformation and/or

permutation.

5. Illustrate the effect of modeling BVH in existing dataset, an F2 cross from Leamy et al, and

discover a new QTL for bodyweight.

2.2 Statistical Methods

This section reviews four approaches for modeling the effect of a single QTL on the phenotypic

mean and/or variance: the standard linear model, Levene’s test, Cao’s tests, and our preferred

procedure based on the DGLM. For each approach we describe a set of alternative procedures for

evaluating significance (i.e., calculating p-values) that provide varying degrees of protection against

the impact of BVH and distributional assumptions more generally. The following section, Data and

Simulations, then describes a simulation study that assesses the approaches and p-value procedures,

and a dataset to which they are applied genomewide.

1This chapter has been adapted from a manuscript submitted to G3. The citation will be: Corty, RW. and Valdar, W.,
2018 Mean-Variance QTL Mapping on a Background of Variance Heterogeneity. G3: Genes, Genomes, Genetics.
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2.2.1 Definitions

We start by defining three partially overlapping classes of QTL:

mQTL: a locus containing a genetic factor that causes heterogeneity of phenotype mean,

vQTL: a locus containing a genetic factor that causes heterogeneity of phenotype variance, and

mvQTL: a locus containing a genetic factor that causes heterogeneity of either phenotype mean,

variance, or both — a generalization that includes the other two classes.

In addition, since we restrict our attention to QTL mapping methods that test genetic association with

a phenotype one locus at a time, we distinguish two sources of variance effects:

Foreground Variance Heterogeneity (FVH): effects on the variance that arise from the locus

under consideration (the focal locus);

Background Variance Heterogeneity (BVH): effects on the variance that arise from outside of the

focal locus, e.g., from another locus or an experimental covariate.

2.2.2 Procedures to evaluate the significance of a single test

In comparing different statistical approaches and their sensitivity to BVH, namely the effect of

BVH on power and false positive rate (FPR), it is important to acknowledge that various measures

could be taken to make significance testing procedures more robust to model misspecification in

general and to BVH specifically. The significance testing methods considered here are frequentist,

involving the calculation of a test statistic T on the observed data followed by an estimation of

statistical significance based on a conception of T ’s distribution under the null. However, BVH

constitutes a departure of distributional assumptions, and in any rigorous applied statistical analysis

when departures are expected it would be typical to consider protective measures such as, for

example, transforming the response to make asymptotic assumptions more reasonable, or the use

of computationally intensive procedures, such as those based on bootstrapping or permutation, to

evaluate significance empirically.

Nominal significance (i.e., the p-value for a single hypothesis test) is evaluated using four distinct

procedures. The first two rely on asymptotics:
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1. Standard: The test statistic T is computed on the observed data and compared with its

asymptotic distribution under the null.

2. Rank-based inverse normal transform (RINT): As for standard, except observed phenotypes

{yi}ni=1 are first transformed to strict normality using the function RINT(yi) = Φ−1[(rank(yi)−

3/8)/(n + 1/4)], where Φ is the normal c.d.f. and rank(yi) is gives the rank (from 1, . . . , n)

(Beasley et al., 2009).

The second two determine significance empirically based on randomization: the test statistic T is

recomputed as T (r) under randomizations of the data r = 1, . . . , R, and the resulting set of statistics

{T (r)}Rr=1 is used as the empirical distribution of T under the randomized null. Two alternative

randomizations are considered:

3. Residperm: we generate a pseudo-null response {y(r)i }ni=1 based on permuting the residuals of

the fitted null model, (Freedman and Lane, 1983; Good, 2013), a process recently applied in

the field of QTL mapping by Cao et al. (2014).

4. Locusperm: we leave the response intact, instead permuting the rows of the design matrix (or

matrices) that differentiate(s) the null from alternative model.

2.2.3 Procedure to evaluate genomewide significance

In the context of a genome scan, where many hypotheses are tested, we aim to control the

genomewide FPR, namely the family-wise error rate (FWER), the probability of making at least

one false positive finding across the whole genome. This is done following the general approach of

Churchill and Doerge (1994), which is closely related to the locusperm procedure described above,

and which we refer to as genomeperm. Briefly, we perform an initial genome scan, recording test

statistics {Tl}Ll=1 for all L loci. Then for each randomization r = 1, . . . , R, and for only the parts

of the model that distinguish the null from the alternative model, the genomes are permuted among

the individuals; the scan is then repeated to yield simulated null test statistics {T (r)
l }

L
l=1 of which

the maximum, T (r)
max, is recorded. The collection of {T (r)

max}Rr=1 from all R such permutations is then

used to fit a generalized extreme value distribution (GEV) (Dudbridge and Koeleman, 2004), and the

quantiles of this are used to estimate FWER-adjusted p-values for each {Tl}Ll=1.
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2.2.4 Standard linear model (SLM) for detecting mQTL

The standard model of quantitative trait mapping uses a linear regression based on the approxima-

tion of Haley and Knott (1992) and Martı́nez and Curnow (1992) to interval mapping of Lander and

Botstein (1989). The effect of a given QTL on quantitative phenotype yi of individual i = 1, . . . , n

is modeled as

yi ∼ N(mi, σ
2) (2.1)

where σ2 is the residual variance and mi is a linear predictor for the mean, defined, in what we term

the “full model”, as

Full model: mi = µ+ xT
i β + qT

i α , (2.2)

where µ is the intercept, xi is a vector of covariates with effects β, and qi is a vector encoding the

genetic state at the putative mQTL with corresponding mQTL effects α. In the case considered here

of biallelic loci arising from a cross of two founders, A and B, the genetic state vector qi = (ai, di)
T

is defined as follows: when genotype is known, for genotypes (AA,AB,BB), the additive dosage

is ai = (0, 1, 2) and the dominance predictor is di = (0, 1, 0); when genotype is available only as

estimated probabilities p(AA), p(AB) and p(BB), following (Haley and Knott, 1992; Martı́nez and

Curnow, 1992), we use the corresponding expectations, ai = 2p(AA) + p(AB) and di = p(AB).

The test statistic for an mQTL is based on comparing the fit of the full model, acting as an

alternative model, with that of a null that omits the locus effect, namely,

Null model: mi = µ+ xT
i β . (2.3)

Since the regression in each case provides a maximum likelihood fit, the test statistic used here is

likelihood ratio (LR) statistic, T = 2(`1 − `0), where `1 and `0 are the log-likelihoods under the

alternative and the null respectively. For the biallelic model, the asymptotic test is the likelihood

ratio test (LRT) whereby under the null, T ∼ χ2
2. (Note: Alternative evaluation using the F-test is in

general more precise but for our purposes provides equivalent results.)
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The residperm approach to empirical significance evaluation of T proceeds as follows. We

first fit the null model (Equation 2.3) to obtain predicted values m̂i = xT
i β̂ and estimated residuals

ε̂i such that yi = m̂i + ε̂i. Then, for each randomization r = 1, . . . , R, we generate pseudo-null

phenotypes {y(r)i }ni=1 as

y
(r)
i = m̂i + ε̂πr(i) ,

where if πr is a vector containing a random permutation of the indices i = 1, . . . , n, then πr(i) is its

ith element, mapping index i to its rth permuted version. The null and alternative models are then

fitted to {y(r)i }ni=1 to yield `(r)1 and `(r)0 , and hence T (r).

In the locusperm approach to empirical significance, the response is unchanged but permutations

are applied to the locus genotypes. For each randomization r, the full model mi is

Permuted full model: mi = µ+ xT
i β + qT

πr(i)
α (2.4)

where πr(i) is as defined for residperm above. This full model fit yields `(r)1 , and then T (r) =

2(`
(r)
1 − `0). Note that `(r)0 need not be recomputed after randomization because because only the

rows of the design matrices that are unique to the alternative model are permuted and thus `(r)0 = `0.

Genomeperm applies locusperm genomewide: specifically, in each randomization r = 1, . . . , R, the

same permutation, πr, is applied to all L loci.

2.2.5 Levene’s Test (LV) for detecting vQTL

Levene’s test is a procedure for differences in variance between groups that can be used to detect

vQTL. Suppose individuals are in G mutually exclusive groups g = 1, . . . , G. Let g[i] denote the

group to which individual i belongs, denote gth group size as ng =
∑n

i=1 I{g[i]=g}, and gth group

mean as ȳg = n−1g
∑n

i=1 yiI{g[i]=g}. Then denote the ith absolute deviation as zi = |yi − ȳg[i]|, the

group mean of these as z̄g = n−1g
∑n

i=1 ziI{g[i]=g} and overall mean z̄ = n−1
∑n

i=1 zi. Levene’s W

statistic is then

W =

∑G
g=1 ng (z̄g − z̄)2

(G− 1)

[∑n
i=1(zi − z̄g[i])2

(n−G)

]−1
, (2.5)

which under the null model of no variance effect follows the F distribution asW ∼ F (N−G,G−1)

(Levene, 1960). Note that replacing means of y with medians gives the related Brown-Forsythe
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test (Brown and Forsythe, 1973), and replacing all instances of z with y in Equation 2.5 gives the

ANOVA F statistic.

Levene’s test does not lend itself naturally to the residperm approach because it does not

explicitly involve a null model to split the data into hat values and residuals. We therefore use the

null model from the SLM (Equation 2.3) to approximate the residperm procedure with Levene’s test.

To execute the locusperm procedure, for each randomization r, the group labels are permuted among

the individuals, which is equivalent to replacing all instances of g[i] above with g[πr(i)], with πr(i)

defined as above. A corresponding genomewide procedure, although not performed here, would

ensure that each randomization r applies the same permutation πr across all loci.

2.2.6 Cao’s Tests

Cao et al. (2014) elaborates the SLM to have a variance parameter that differs by genotype, i.e.,

yi ∼ N(mi, σ
2
i ), (2.6)

where mi is the linear predictor, σ2i is the variance of the ith individual. These are defined in what

we term the “full model” as

Full model:


mi = µ+ xT

i β + qT
i α

σ2i = φg[i]

, (2.7)

where g[i] indexes the genotype group to which i belongs, and {φg}Gg=1 are the variances of the

g = 1, . . . , G genotype groups. Thus an individual’s variance is entirely dictated by its genotype,

and that genotype must be categorically known (or otherwise assigned). Cao et al. (2014) fits this

model using a two-step, profile likelihood method, which in our applications we observe to be

indistinguishable from full maximum likelihood (Figure 2.13).

Cao et al. (2014) describes tests for mQTL, vQTL and mvQTL based on comparing a full

model against three different null models; we detail these tests below in our notation, denoting them

respectively CaoM, CaoV, and CaoMV.
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2.2.6.1 CaoM test for detection of mQTL

The CaoM test involves an LRT between Cao’s full model and Cao’s no-mQTL model:

Cao’s no-mQTL model:


mi = µ+ xT

i β

σ2i = φg[i]

, (2.8)

To execute the residperm procedure for CaoM, pseudo-null phenotypes are generated using m̂i and ε̂i

from Cao’s no-mQTL model (Equation 2.8). The locusperm procedure respecifies the full model

(Equation 2.7), leaving the variance model unchanged and specifying the mean predictor as mi = µ+

xT
i β+ qT

πr(i)
α. The genomeperm procedure similarly applies the locusperm procedure genomewide,

ensuring each randomization r applies the same permutation πr to the mean specification across all

loci.

2.2.6.2 CaoV for detection of vQTL

The CaoV test involves an LRT between Cao’s full model and Cao’s no-vQTL model:

Cao’s no-vQTL model:


mi = µ+ xT

i β + qT
i α

σ2i = σ2
, (2.9)

where the unsubscripted σ2 is a single, overall residual variance. This null model is identical to the

alternative model in the SLM (Equation 2.2).

To execute the residperm procedure for CaoV, pseudo-null phenotypes are generating using m̂i

and ε̂i from Cao’s no-mQTL model (Equation 2.9). The locusperm procedure respecifies the full

model (Equation 2.7), leaving the mean sub-model unchanged and specifying the variance predictor

as σ2i = φg[π(i)]. The genomeperm procedure applies the locusperm procedure genomewide, ensuring

each randomization r applies the same permutation πr to the variance specification across all loci.
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2.2.6.3 CaoMV for detection of generalized mvQTL

The CaoMV test involves an LRT between Cao’s full model and Cao’s no-QTL model:

Cao’s no-QTL model:


mi = µ+ xT

i β

σ2i = σ2
. (2.10)

This null model is identical to the null model in the SLM (Equation 2.3).

To execute the residperm procedure for CaoMV, pseudo-null phenotypes are generated using m̂i

and ε̂i from Cao’s no-QTL model (Equation 2.10). The locusperm procedure specifies the mean

predictor as mi = µ+ xT
i β + qπ(i) and the variance predictor as σ2g[i] = φ[π(i)]. The genomeperm

procedure applies the locusperm procedure genomewide, ensuring each randomization r applies the

same permutation πr to the mean and variance specifications across all loci.

2.2.7 Double Generalized Linear Model (DGLM)

The DGLM models the phenotype yi via two linear predictors as

yi ∼ N(mi, σ
2
i ) , where σ2i = σ2 × exp(vi)

where mi predicts the phenotype mean and vi predicts the extent to which the baseline residual

variance σ2 is increased in individual i. In what we term the “DGLM full model”, these are specified

as

Full model:


mi = µ+ xT

i β + qT
i α

vi = zTi γ + qT
i θ

, (2.11)

where µ is the intercept, zi is a vector of covariates (which may be identical to xi), γ is a vector of

covariate effects on vi, and θ is a vector of locus effects on vi.

As with Cao’s full model, the DGLM full model can be compared, in a likelihood ratio test,

with various null models to test for mQTL, vQTL (Rönnegård and Valdar, 2011), or mvQTL. A full

maximum likelihood fitting procedure for the DGLM was provided by Smyth (1989).
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2.2.7.1 DGLMM for detecting mQTL:

For detecting mQTL, we use an LRT of the DGLM full model in Equation 3.1 against the

no-mQTL model:

No-mQTL model:


mi = µ+ xT

i β

vi = zTi γ + qT
i θ

, (2.12)

where the LR statistic has asymptotic distribution T ∼ χ2
2.

To execute the residperm procedure for DGLMM, pseudo-null phenotypes are generated using

m̂i and ε̂i from the Equation 2.12. The locusperm procedure respecifies the mean predictor as

mi = µ+ xT
i β + qT

π(i)α and does not modify the variance predictor. The genomeperm procedure

similarly applies the locusperm procedure genomewide, ensuring each randomization r applies the

same permutation πr to the mean specification across all loci.

2.2.7.2 DGLMV for detecting vQTL:

For detecting vQTL, we use an LRT of the DGLM full model in Equation 3.1 against the

no-vQTL model:

No-vQTL model:


mi = µ+ xT

i β + qT
i α

vi = zTi γ

, (2.13)

where the LR statistic has asymptotic distribution T ∼ χ2
2.

To execute the residperm procedure for DGLMV, pseudo-null phenotypes are generated using m̂i

and ε̂i from the Equation 2.13. The locusperm procedure does not modify the variance predictor and

respecifies the mean predictor as vi = zTi γ + qT
π(i)θ. The genomeperm procedure similarly applies

the locusperm procedure genomewide, ensuring each randomization r applies the same permutation

πr to the variance specification across all loci.
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Category Test Description
mQTL SLM Conventional test of mean differences;

allows neither FVH nor BVH
mQTL CaoM Allows FVH, but not BVH
mQTL DGLMM Allows FVH and BVH
vQTL Levene’s test Conventional test of variance differences;

detects FVH, does not allow BVH
vQTL CaoV Detects FVH, does not allow BVH
vQTL DGLMV Detects FVH, allows BVH
mvQTL CaoMV Detects FVH, does not allow BVH
mvQTL DGLMMV Detects FVH and allows BVH

Table 2.1: The eight tests that were evaluated in the simulation studies. FVH: foreground variance
heterogeneity. BVH: background variance heterogeneity.

2.2.7.3 DGLMMV for detecting mvQTL:

For detecting mvQTL, we use an LRT of the DGLM full model in Equation 3.1 against the

no-QTL model:

No-QTL model:


mi = µ+ xT

i β

vi = zTi γ

, (2.14)

where the LR statistic has asymptotic distribution T ∼ χ2
4.

To execute the residperm procedure for DGLMMV, pseudo-null phenotypes are generated using

m̂i and ε̂i from the Equation 2.14. The locusperm procedure respecifies the mean predictor as

mi = µ + xT
i β + qT

π(i)α and the variance predictor as vi = zTi γ + qT
π(i)θ. The genomeperm

procedure similarly applies the locusperm procedure genomewide, ensuring each randomization r

applies the same permutation πr to the mean and variance specifications across all loci.

2.3 Data and Simulations

Simulation was used to assess the ability of the eight tests described above to distinguish each

of the three types of QTL — pure mQTL, pure vQTL, and mixed mvQTL — from a null locus in

the presence and absence of background variance heterogeneity (BVH). Tests are distinguished by

their ability to accommodate and target foreground variance heterogeneity (FVH) and background

variance heterogeneity (Table 2.1).
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In each simulation, n = 300 observations were simulated as

yi ∼ N(qTi α, exp(zTi γ + qTi θ))

where yi is the phenotype of individual i, qi is the genotype, and zi is the indicator vector for the

factor that drives BVH in scenarios where it is present. In each simulation, each row of q (each qi) is

drawn randomly from [-1, 0, 1] with probability (0.25, 0.5, 0.25) mimicking an F2 intercross. Across

all simulations, Z is fixed to be an indicator matrix mapping the first 60 observations to group 1, the

next 60 to group 2, ... and the last 60 to group 5.

Values of α, θ, and γ differentiate the eight simulation scenarios as described below.

2.3.1 Scenarios

Simulations varied in two dimensions: locus effect (four options) and BVH (two options) for a

total of eight simulation scenarios. Each of the eight scenarios was examined in S = 10, 000 simula-

tion trials. Locus effect sizes were chosen such that all QTL were detectable with approximately

70% power at a 5% false positive rate for traditional tests in the absence of BVH. Comprehensive

details on the simulation setup are described in Supplementary Materials.

The four options for a simulated locus effect were as follows:

1. null locus: The locus has no effect on phenotype.

2. pure mQTL: The locus has an additive effect on the phenotype mean that explains 5% of the

total variance.

3. pure vQTL: The locus has an additive effect on the log standard deviation that is detectable

with approximately 70% power at a 5% false positive rate for traditional tests in the absence of

BVH.

4. mixed mvQTL: The locus has both an additive mean effect that explains 3.25% of phenotype

variance and an additive variance effect that is approximately equally detectable.

The two options for simulated BVH were as follows:
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1. absent: Nothing, except for possibly the locus (if a vQTL or mvQTL), influences the residual

variance. (γ = [0, 0, 0, 0, 0])

2. present: γ = [−0.4,−0.2, 0, 0.2, 0.4], resulting in group-wise standard deviations in the null

locus and mQTL scenarios of approximately [0.67, 0.82, 1, 1.22, 1.49]. In the vQTL and

mvQTL scenarios, these BVH effects combine additively with the locus effects on the log

standard deviation scale, yielding 15 distinct standard deviations. These effect sizes generate a

spectrum of standard deviations across groups that are consistent with those observed in the

real data reanalysis that follows.

2.3.2 Tests and Significance

In each scenario, eleven tests were applied, and four procedures were used to assess the statistical

significance of each test, for a total of 32 test-procedures.

The eleven tests comprise four tests for detecting mQTL: LM, CaoM, and DGLMM with and

without modeling the variance covariate; four for detecting vQTL: Levene’s test, CaoV, DGLMV with

and without modeling the variance covariate; and three for detecting mvQTL: CaoMV and DGLMMV

with and without modeling the variance covariate, as described in Methods.

The eleven tests, however, contain some redundancy, and so in the main text we report results

from only eight. Specifically, for a given type of QTL, the DGLM model that omits variance

covariates is equivalent to the corresponding Cao’s test, and, barring computational errors in fitting,

should give equivalent results (as was observed); results from these DGLM models are therefore

omitted from the main text, but for completeness are reported in the supplement.

The four procedures for evaluating the statistical significance were: standard, RINT, residperm,

and locusperm, as described in the Methods.

2.3.3 Evaluation of tests and procedures

Tests and procedures for assessing statistical significance were evaluated based on their receiver

operating characteristics (ROC) and their ability to accurately control the FPR to the nominal level.

ROC curves display the ability of a test to discriminate between two conditions by plotting FPR

against power for all possible cutoffs.

25



In this case, the ROC curve reflects the ability of a test to discriminate between QTL and null

loci. Specifically, for a given method and cutoff c, the FPR was the fraction null simulations in which

the nominal p-value p was less than c; the power is the fraction of times this happened in non-null

(i.e., QTL) simulations. A test was said to accurately control FPR when, for all c, FPR = c; it was

said to “dominate” another test when it had higher power across all FPRs.

The ROC curve cannot immediately distinguish between tests that accurately control FPR and

those that do not. We added a symbol to each ROC curve at the point where c = 0.05. In cases where

the point falls on the vertical line at FPR = 0.05, it reflects accurate FPR control. In cases where the

point falls to the left or right of the vertical line it reflects a conservative or anti-conservative test,

respectively. QQ plots, provided in the supplementary material provide a more holistic view on the

FPR control of each test and procedure.

2.3.4 Leamy et al. Summary of Original Study

Leamy et al. (2000) backcrossed mice from strain CAST/Ei, a small, lean strain, into mouse

strain M16i, a large, obese strain. Nine F1 males were bred with 54 M16i females to produce a total

of 421 offspring (208 female, 213 male), which were genotyped at 92 microsatellite markers across

the 19 autosomes and phenotyped for body composition and morphometric traits. We retrieved all

available data on this cross, which included marker genotypes, covariates, and eight phenotypes (body

weight at five ages, liver weight, subcutaneous fat pad thickness, and gonadal fat pad thickness),

from the Mouse Phenome Database (Grubb et al., 2014), and estimated genotype probabilities at

2cM intervals across the genome using the hidden Markov model in R/qtl (Broman et al., 2003).

This mapping population has been studied for association with several phenotypes: asymmetry

of mandible geometry (Leamy et al., 2000), limb bone length (Leamy et al., 2002; Wolf et al., 2006),

organ weight (Leamy et al., 2002; Wolf et al., 2006; Yi et al., 2006), fat pad thickness (Yi et al., 2005,

2006, 2007), and body weight (Yi et al., 2006). The most relevant prior study to this reanalysis, Yi

et al. (2006), used standard methods to identify QTL for body weight at three weeks on chromosomes

1 and 18. However, we were not able to reproduce this result, despite following their analysis as

described.
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2.3.5 Availability of Data and Software

Analyses were conducted in the R statistical programming language (R Core Team, 2017). The

simulation studies used the implementation of the standard linear model from package stats,

Levene’s test from car, Cao’s tests as published in Cao et al. (2014) and the DGLM tests in package

dglm. The reanalyzed dataset is available on the Mouse Phenome Database (Grubb et al., 2014)

with persistent identifier MPD:206.

The entire project, including data and all analysis scripts, is available as a Zenodo repository at

10.5281/zenodo.1181887. There are six files stored in this repository. Files S1, S2, and S3 contain

the R scripts necessary to replicate the simulation studies and their analysis, relying on the plotROC

package to make ROC plots (Sachs and Others, 2017). File S4 contains the data from Leamy et al.

(2000) that was reanalyzed. File S5 contains the attempted replication of the original analysis (Yi

et al., 2006) and file S6 contains the new analysis, using package vqtl.

2.4 Results

2.4.1 Simulation study on single locus testing

Simulations were performed to examine the ability of the eight tests listed in Table 2.1 to detect

nonzero effects belonging to their target QTL types (mQTL, vQTL, mvQTL), and to control the

number of false positives when no such QTL effects were present. This was done both in the presence

and absence of background variance heterogeneity, and for each test, with p-values calculated by

each of the four alternative p-value generation procedures (standard, RINT, residperm, locusperm).

The full combination of settings is listed in Table 2.2, which also lists results pertaining to a nominal

FPR of 0.05, and described in more detail in Data and Simulations.

2.4.1.1 All three mQTL tests have equivalent performance in the absence of BVH.

All three mQTL tests — the standard linear model, the CaoM test and DGLMM— accurately

controlled FPR under all four significance testing procedures (Figure 2.1, left panel, Figure 2.10,

left column, and Table 2.2, column 1, top third). And all twelve test-procedure combinations had

indistinguishable power to detect mQTL, in the range [0.692, 0.706] (Table 2.2, column 2 and

Figure 2.7).
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Figure 2.1: ROC curves for detection of mQTL in presence and absence of BVH. Lines are drawn
for three different mQTL tests in Table 2.1 and four significance procedures, with a point (circle,
square, triangle, tick) corresponding to nominal significance at p = 0.05 (more details in Data and
Simulations). DGLMM dominates CaoM and SLM in the presence of BVH, accurately controlling
FPR with the locusperm and residperm procedures, but not the standard and RINT procedures, which
have FPR of 0.058 and 0.060 (Table 2.2).

These simulation results do not favor any one test over another, but they do favor the standard

and RINT assessment procedures over the residperm and locusperm in the sense that the latter two

yield no additional improvement in FPR control or power for their additional computational cost.

2.4.1.2 DGLMM dominates other mQTL tests in the presence of BVH.

The SLM and CaoM accurately controlled FPR under all four procedures to assess statistical

significance (Figure 2.1, right panel, Figure 2.10, right column, and Table 2.2, column 5, top third).

In contrast, DGLMM exhibited modest FPR inflation under the standard and RINT procedures,

controlling FPR to the nominal level only under the empirical procedures. Nonetheless, despite

requiring an empirical procedure to control FPR, in its power to detect an mQTL under BVH,

DGLMM dominated the other two tests, with power in the range of [0.813, 0.816] compared with the

power of SLM and CaoM in the range of [0.689, 0.718] (Figure 2.1, right panel, Table 2.2).

Based on the results of these simulations, DGLMM is the preferable mQTL test in the presence

of BVH. But, to accurately control FPR, DGLMM requires an empirical procedure be used to assess

statistical significance; both the residperm and locusperm procedures are capable.
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Figure 2.2: ROC curves for detection of vQTL in presence and absence of BVH. Lines are drawn
for three different vQTL tests in Table 2.1 and four significance procedures, with a point (circle,
square, triangle, tick) corresponding to nominal significance at p = 0.05 (more details in Data and
Simulations). DGLMV dominates CaoV and Levene’s test in the presence of BVH and accurately
controls FPR under the standard and locusperm procedures (Table 2.2). CaoV suffers a drastic
increase in false positives in the presence of BVH under the standard procedure, and DGLMV would
do the same if there were some unmodeled BVH driver, thus DGLMV under the locusperm procedure
is the preferable test.
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2.4.1.3 Parametric tests dominate Levene’s test for vQTL in the absence of BVH.

In null simulations, CaoV and DGLMV exhibited slightly anti-conservative behavior using the

standard (i.e., asymptotic) significance testing procedure (FPR = 0.053), modestly conservative

behavior under the RINT procedure (FPR = 0.043) and slightly conservative behavior under the

residperm and locusperm procedures (FPR in the range [0.046, 0.048], Figure 2.2, left panel,

Figure 2.11, left column, and Table 2.2, column 2, middle third). Levene’s test, in contrast, was

overly conservative using the standard and RINT procedures, but accurately controlled FPR under

the empirical procedures (Figure 2.8).

Despite the variation in FPR control among the test-procedure combinations, CaoV and DGLMV

had more power than Levene’s test under all procedures (0.724 vs. 0.667). Thus, the empirical

procedures of CaoV and DGLMV are the preferred vQTL tests in the absence of BVH, because

they have the highest power of the test-procedure combinations that are not anti-conservative. The

additional power of CaoV and DGLMV relative to Levene’s test is consistent with the fact that they

make strong parametric assumptions that are exactly true in these simulations and Levene’s test does

not.

2.4.1.4 DGLMV dominates other vQTL tests in the presence of BVH.

In the presence of BVH, there were three test-procedure combinations with major departures

from accurate FPR control. CaoV under the standard procedure was drastically anti-conservative, and

DGLMV under both the RINT and residperm procedures was drastically conservative (Figure 2.2,

right panel and Figure 2.8, and Figure 2.11, right column). DGLMV dominated Levene’s test and

CaoV, so the standard and locusperm procedure, which accurately control its FPR, seem to be equally

preferable and preferable over all other test-procedures.

Nonetheless, there is an important caveat that makes locusperm the strongly preferable signifi-

cance procedure. In this simulation, there are no BVH driving factors unknown to DGLMV. If there

were such a factor, DGLMV under the standard procedure would have the same drastic FPR inflation

that CaoV showed under the standard procedure in these simulations (Figure 2.8 (a), third panel). In

contrast, the presence of a unknown or unmodeled BVH driving factor does not inflate the FPR of

DGLMV under the locusperm procedure. Due to the practical difficulty of excluding the possibility
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Figure 2.3: ROC curves for detection of mvQTL in presence and absence of BVH. Lines are drawn
for two different mvQTL tests in Table 2.1 and four significance procedures, with a point (circle,
square, triangle, tick) corresponding to nominal significance at p = 0.05 (more details in Data
and Simulations). mvQTL tests combined the responses of mQTL tests and vQTL tests to BVH,
yielding a situation in which DGLMMV dominates CaoMV, but only accurately controls FPR under
the locusperm procedure (Table 2.2). The anti-conservative nature of the standard procedure follows
from the patterns observed in mQTL tests and the conservative nature of the RINT and residperm
procedures follows from the patterns observed in vQTL tests.

of an unknown BVH driver, the most reliable way to guard against covert FPR inflation without

giving up the additional power of DGLMV is to use the locusperm procedure.

2.4.1.5 mvQTL mirrors vQTL testing; DGLMMV dominates CaoMV in the presence of BVH.

As with vQTL tests, there was little to distinguish any test or procedure in the absence of BVH

except for the modest conservative nature of the RINT procedure and the concomitant decrease in

power (Figure 2.3, left panel and Table 2.2, columns 1 and 4, bottom third).

In the presence of BVH, however, DGLMMV dominates CaoMV, with the standard and locusperm

procedures accurately controlling FPR (Figure 2.3, right panel and Figure 2.12, right column). As

with vQTL testing, due to the difficulty in ruling out BVH from an unknown source and the inflated

FPR that results from such BVH under the standard procedure, the DGLMMV under the locusperm

procedure is the recommended test for mvQTL.
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2.4.1.6 In the presence of BVH, the rank-based inverse normal transformation fails to cor-

rect anti-conservative behavior of DGLMM and over corrects that of DGLMV and

DGLMMV

A consistent feature of the simulations involving detection of variance effects, whether vQTL or

mvQTL, is that FPR control and power is affected, for better or worse, by applying the RINT to the

response.

In the presence of BVH, DGLMM under the standard procedure was anti-conservative (FPR

= 0.058 at α = 0.05). The RINT procedure had no efficacy in returning this test to accurate FPR

control (FPR = 0.060).

In the case of vQTL detection in the presence of BVH, CaoV under the standard procedure

had a drastically inflated FPR (0.123) and the RINT procedure over-corrected it (FPR = 0.044).

Similarly, the RINT procedure disrupted DGLMV, which accurately controlled FPR under the

standard procedure, causing overly conservative behavior (FPR = 0.021).

As always, in the presence of BVH, the mvQTL tests exhibited a mixture of the patterns observed

in mQTL tests and vQTL tests. Both CaoMV and DGLMMV were anti-conservative under the standard

procedure, illustrating their relations to CaoV and DGLMM respectively. And in both cases, the

RINT procedure drove an over-correction into the realm of over conservatism (FPR = 0.046 and

0.038 respectively).

In summary, the RINT procedure is unhelpful in the context of the DGLMM: it inflates the FPR

of a test that is appropriately sized under standard procedures. But, in the context of vQTL testing

with BVH from an unknown source, it has one useful and important property: pre-processing the

phenotype with the RINT, leads to vQTL tests that are conservative rather than anti-conservative,

decreasing the probability of false positives at the expense of false negatives.

2.4.2 Genomewide reanalysis of bodyweight in Leamy et al. backcross

To understand the impact of BVH on mean and variance QTL mapping in real data, we applied

both traditional QTL mapping, using SLM, and mean-variance QTL mapping, using Cao’s tests and

the DGLM, to body weight at three weeks in the mouse backcross dataset of Leamy et al. (2000).
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BVH absent BVH present

test version null mQTL vQTL mvQTL null mQTL vQTL mvQTL

LM standard 0.050 0.706 0.056 0.510 0.051 0.701 0.050 0.508
RINT 0.050 0.704 0.052 0.495 0.052 0.718 0.049 0.518
residperm 0.048 0.700 0.054 0.502 0.049 0.694 0.050 0.504
locusperm 0.049 0.702 0.054 0.499 0.049 0.695 0.049 0.503

CaoM standard 0.052 0.705 0.051 0.515 0.050 0.700 0.048 0.516
RINT 0.051 0.705 0.051 0.503 0.052 0.716 0.047 0.523
residperm 0.049 0.697 0.049 0.503 0.048 0.695 0.047 0.508
locusperm 0.048 0.691 0.048 0.500 0.048 0.689 0.044 0.503

DGLMM standard 0.052 0.705 0.051 0.515 0.058 0.832 0.054 0.649
RINT 0.051 0.705 0.051 0.503 0.060 0.830 0.054 0.644
residperm 0.049 0.696 0.049 0.504 0.052 0.816 0.046 0.629
locusperm 0.048 0.692 0.048 0.500 0.050 0.813 0.046 0.624

Levene’s test standard 0.045 0.049 0.660 0.462 0.046 0.046 0.577 0.393
RINT 0.045 0.043 0.645 0.422 0.047 0.043 0.546 0.344
residperm 0.049 0.052 0.667 0.474 0.048 0.050 0.585 0.401
locusperm 0.049 0.052 0.667 0.474 0.048 0.050 0.583 0.400

CaoV standard 0.053 0.053 0.750 0.543 0.123 0.127 0.744 0.563
RINT 0.043 0.042 0.700 0.467 0.044 0.048 0.563 0.364
residperm 0.047 0.051 0.729 0.519 0.045 0.054 0.572 0.388
locusperm 0.046 0.049 0.726 0.517 0.047 0.051 0.567 0.382

DGLMV standard 0.053 0.053 0.750 0.543 0.049 0.056 0.732 0.524
RINT 0.043 0.042 0.700 0.467 0.021 0.027 0.570 0.340
residperm 0.048 0.051 0.729 0.520 0.015 0.018 0.542 0.329
locusperm 0.046 0.049 0.724 0.515 0.046 0.050 0.713 0.498

CaoMV standard 0.050 0.597 0.643 0.741 0.100 0.642 0.649 0.751
RINT 0.043 0.585 0.574 0.701 0.046 0.600 0.436 0.646
residperm 0.046 0.587 0.618 0.728 0.050 0.514 0.507 0.632
locusperm 0.048 0.589 0.617 0.727 0.050 0.516 0.506 0.630

DGLMMV standard 0.050 0.597 0.643 0.741 0.057 0.741 0.633 0.807
RINT 0.043 0.585 0.574 0.701 0.038 0.715 0.445 0.726
residperm 0.046 0.590 0.618 0.729 0.024 0.621 0.469 0.687
locusperm 0.046 0.590 0.617 0.728 0.051 0.723 0.601 0.788

Table 2.2: Positive rates of all tests in all scenarios based on 10,000 simulations, 1,000 permutations
each to estimate empirical null distributions (residperm and locusperm), and a nominal false positive
rate (FPR) of α = 0.05. Entries in column 1 and 5 through all rows, columns 3 and 7 in the top third,
and columns 2 and 6 in the middle third represent FPR. The entries in the rest of the table represent
power. The largest standard error for an FPR is 0.001. The largest standard error for a power is
0.0025.
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Figure 2.4: FWER-controlling association statistic at each genomic locus for body weight at three
weeks. The linear model (green, “traditional”) does not detect any statistically-significant associations.
The mQTL test takes into account the heterogeneity of both mean and variance due to which F1 male
fathered each mouse in the mapping population and detects one mQTL on chromosome 11.

2.4.2.1 Analysis with Traditional QTL Mapping Identifies no QTL.

We first used a traditional, linear modeling-based QTL analysis, with sex and father as additive

covariates and genomewide significance based on 1000 genome permutations (Churchill and Doerge,

1994). Although sex was found not to be a statistically significant predictor of body weight (p = 0.093

by the likelihood ratio test with 1 degree of freedom), it was included in the mapping model because,

based on the known importance of sex in determining body weight, any QTL that could only be

identified in the absence of modeling sex effects would be highly questionable. Father was found to

be a significant predictor of body weight in the baseline fitting of the SLM (p = 9.6× 10−5 by the

likelihood ratio test with 8 degrees of freedom) and therefore was included in the mapping model.

No associations rose above the threshold that controls family-wise error rate to 5% (Figure 2.4,

green line). One region on the distal part of chromosome 11 could be considered “suggestive” with

FWER-adjusted p ≈ 0.17.

To test the sensitivity of the results to the inclusion/exclusion of covariates, the analysis was

repeated without sex as a covariate, without father as a covariate, and with no covariates. No QTL

were identified in any of these sensitivity analyses. This result is consistent with the fact that none of

the publications on this mapping population reported any QTL for body weight at any age.

34



2.4.2.2 Analysis with Cao’s tests Identifies no QTL

The same phenotype was analyzed with Cao’s tests, again including sex and father as mean

covariates, and using the genome permutation procedures described in Methods were used to control

FWER. No statistically significant mQTL, vQTL, nor mvQTL were identified (Figure 2.14b).

2.4.2.3 Analysis with DGLM-based tests Identifies an mQTL

The same phenotype was analyzed with the DGLM-based tests. In a baseline fitting of the

DGLM, sex was found not to be a statistically significant predictor of mean or residual variance

(mean effect p = 0.18, variance effect p = 0.22, and joint p = 0.19 by the LRT with 1, 1, and 2 d.f.).

But father was found to be a statistically significant predictor of both mean and variance (mean effect

p = 2.0× 10−7, variance effect p = 1.8× 10−11 , and p = 4.8× 10−14 by the LRT with 8, 8, and

16 d.f.). Therefore, following the same reasoning as in the mean model described above, both sex

and father were included in the mapping model as covariates of both the mean and the variance. As

with the other tests, the genome permutation procedures described in Methods were used to control

FWER.

A genomewide significant mQTL was identified on chromosome 11 (Figure 2.4, blue line). The

peak was at 69.6 cM with FWER-adjusted p = 0.011, with the closest marker being D11MIT11

at 75.7 cM with FWER-adjusted p = 0.016. Nonparametric bootstrap resampling, using 1,000

resamples (after Visscher et al. 1996), established a 90% confidence interval for the QTL from 50 to

75 cM. This region overlaps with the “suggestive” region identified in the traditional analysis.

By the traditional definition of percent variance explained, following from a fitting of the

standard linear model, this QTL explains 2.1% of phenotype variance. Though, given the variance

heterogeneity inherent in the DGLM that was used to detect this QTL, this quantity is better

considered the “average” percent variance explained. The ratio of the QTL variance to the sum of

QTL variance, covariate variance, and residual variance ranges from 1% to 6% across the population,

based on the heterogeneity of residual variance.
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Figure 2.5: Residuals from the standard linear model for body weight at three weeks, with sex and
father as covariates, stratified by father. It is evident that fathers differed in the residual variance of
the offspring they produced. For example, the residual variance of offspring from father 1 is greater
than that of father 2 and 7. Here, points are colored by their predicted residual variance in the fitted
DGLM with sex and father as mean and variance covariates.

2.4.2.4 Understanding the Novel QTL

The mQTL on chromosome 11 was identified by the DGLMM test, but not by by the standard

linear model or Cao’s mQTL test. The additional power of the DGLMM test over these other tests

relates to its accommodation of background variance heterogeneity (BVH).

Specifically, the DGLM reweighted each observation based on its residual variance, according

to the sex and F1 father of the mouse. This BVH is visually apparent when the residuals from the

standard linear model are plotted, separated out by father (Figure 2.5).

Some fathers, for example fathers 2 and 7, appear to have offspring with less residual variance

than average, whereas others, for example father 1, seem to have offspring with more residual

variance than average. The DGLM captured these patterns of variance heterogeneity, and estimated

the effect of each father on the log standard deviation of the observations (Figure 2.6). Based on these

estimated variance effects, observations were upweighted (e.g. fathers 2 and 7) and downweighted

(e.g. father 1). This weighting gave the DGLM-based mapping approach more power to reject the

null as compared to the SLM.
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Figure 2.6: The predictive mean and standard deviation of mice in the mapping population based
on father and genotype at the top marker, D11MIT11 on chromosome 11. The genotype effect,
illustrated by the colored ribbons is almost entirely horizontal, indicating a difference in means across
genotype groups but no difference in variance, consistent with the identification of this QTL as a pure
mQTL. The father effects, illustrated by the spread of colored crossbars, have both mean and variance
components. For example, father 7 (blue) has the highest predictive mean and lowest predictive
standard deviation. His offspring were upweighted in the QTL analysis based on their low standard
deviation. Father 1 (red) has an average predictive mean and the highest predictive standard deviation.
His offspring were downweighted in the QTL analysis based on their high standard deviation. Note:
the effect of sex on phenotype mean and variance was modeled, then marginalized out for readability.
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2.4.2.5 Other Phenotypes

For brevity, we described in detail only the results of the DGLM-based analysis of body weight at

three weeks; but, of the eight phenotypes from this cross available on the Mouse Phenome Database,

the mean-variance approach to QTL mapping discovered new QTL in four. Five of the eight

phenotypes — body weight at twelve days, three weeks, and six weeks, as well as subcutaneous and

gonadal fat pad thickness — exhibited BVH due to father, and for each we performed both traditional

QTL mapping using the SLM and mean-variance QTL mapping using the DGLM. For body weight

at three weeks and six weeks, we identified one new mQTL and two new vQTL respectively. For

subcutaneous fat pad thickness, we “undiscovered” one mean QTL. That is, after reweighting the

observations based on the observed variance of each father, two QTL that were detected by the SLM

no longer met criteria for statistical significance, as shown in supplementary figures.

2.5 Discussion

The simulation studies revealed that in the presence of background variance heterogeneity

(BVH), the DGLM-based tests are uniquely powerful in the detection of mQTL, vQTL, and mvQTL.

Our reanalysis of the Leamy et al. dataset demonstrated that the additional power of DGLMM in

the face of BVH can be used to detect an mQTL that was overlooked by all competitor methods.

2.5.1 Detecting and Modeling BVH

To select the right test and procedure to assess significance, it is important to establish whether

there is any BVH present. We advocate fitting the DGLM with all potential BVH drivers as variance

covariates, then including any that are statistically significant as variance covariates in the mapping

model to improve power to detect QTL.

2.5.2 Guidelines for QTL mapping in the presence of BVH

Given that

1. The DGLM-based tests dominate all other tests in the presence of BVH,
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2. the locusperm procedure accurately controls the FPR of the DGLM-based tests in the presence

of BVH, whether the source is known or not, and

3. the locusperm procedure can be extended into the genomeperm procedure to control FWER,

we advocate for the analysis of experimental crosses that exhibit BVH with the three DGLM-

based tests (DGLMM, DGLMV, and DGLMMV) and, where the individuals in the population are

exchangeable (as in an F2 or backcross) or where partial exchangeability can be suitably identified

[e.g., see (Churchill and Doerge, 1994; Zou et al., 2006; Churchill and Doerge, 2008)], the use of our

described genomeperm procedures, which permute the genome in selective parts of the model, to

assess genomewide significance.

Because this procedure involves three families of tests rather than one family as would be typical

with an SLM-based analysis, an additional correction may be desired to control experiment-wise error

rate. DGLMM and DGLMV are orthogonal tests (Smyth, 1989), but DGLMMV is neither orthogonal

nor identical to either, so the effective number of families is between two and three. One reasonable,

heuristic approach to control experiment-wise error rate is simply to lower the acceptable FWER, e.g.

replacing the standard 0.05 with 0.02.

2.5.3 Data reweighting for mQTL detection

The additional power of mean-variance QTL mapping to detect mQTL in general, and of

DGLMM to detect mQTL in the presence of BVH in particular, can be seen as deriving from how data

is reweighted. This reweighting is not based on any prior knowledge on the part of the experimenter,

but rather based on patterns of residual variance heterogeneity detected by the DGLM.

The impact of reweighting can be illustrated through consideration of the normal likelihood.

For yi ∼ N(mi, σ
2/wi), with known weights w1, . . . , wn and known baseline variance σ2, the

log-likelihood can be written as ` = const−WRSS/2σ2, where the key quantity to be minimized2,

WRSS =
n∑
i=1

wi(yi −mi)
2 ,

2Note: const = −0.5(n log 2π −
∑n

i=1 wi log σ
2) can be ignored.
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is the weighted residual sum of squares, that is, the squared discrepancies between the observed

phenotype yi and its predicted value mi weighted by wi. The weights therefore affect how much,

relatively speaking, each data point contributes to the likelihood: highly imprecise measurements,

such as from individuals whose phenotypes are expected to have high variance, have low weight and

diminished contribution, whereas as more precise measurements are correspondingly upweighted.

In the DGLM, weights are informed by experimental covariates and the QTL genotype itself, as

wi = e−vi . In the SLM, unless weights are specified externally, there is no such mechanism for

phenotype precision to be incorporated and so all weights equal 1. The improvement of the DGLM

over the SLM and CaoM, therefore stems entirely from its greater ability to provide this additional

information, and thereby give more credence to phenotype values that are expected to be more

precise.

This reweighting can be thought of has having two benefits in the QTL mapping endeavor.

Geneticists are often rightly concerned about high leverage observations, which can cause to false

positives. Less often acknowledged is that high leverage observations may also induce false negatives,

disrupting an otherwise good statistical model fit. By bringing the data weights into alignment with

their estimated residual variance, the DGLM addresses both of these concerns: by downweighting out-

liers from systematically noisy subgroups, it reduces the potential for false positives; by upweighting

outliers from systematically precise subgroups, it reduces the probability of false negatives.

2.5.4 Covariate correction for vQTL detection

Conceptually, the additional power of the DGLMV to detect vQTL over CaoV in the presence of

BVH, as demonstrated above, derives from its ability to accommodate a covariate, just as any linear

regression analysis benefits from accommodating a covariate. The distinction is that, whereas the

response for the in a typical regression analysis is the observed data, in the case of BVH and the

DGLM, the response is the squared residuals from the mean sub-model.

As with any regression analysis, when the covariate effect is meaningfully large, its inclusion

in the model improves the estimation of the effect of interest. The more precise the estimation of

the effect of interest allows a greater model improvement from the null to alternative model and

ultimately, a more powerful test.
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2.5.5 Percent Variance Explained

Variance heterogeneity complicates the notion of percent variance explained (PVE) by a QTL.

Assuming the QTL has the same effect on the expected value of the phenotype of all individuals,

it will explain a larger percent of total variance for individuals with lower than average residual

variance, and vice versa for individuals with higher than average residual variance. In light of this

observation, the percent variance explained can either be reported as “average percent variance

explained” or can be calculated for some representative sub-groups. For example, if there is variance

heterogeneity across sexes, it would be reasonable to report the PVE of a QTL for both males and

females, or if a vQTL is known to be present elsewhere in the genome, report the PVE for each

vQTL genotype as in Yang et al. (2012).

2.5.6 Rank inverse normal transformation: pros and cons for vQTL mapping

In the detection of vQTL, foreground variance heterogeneity (FVH) and BVH come into conflict

— the goal is to detect FVH and BVH obscures its detection. Both, however, induce excess kurtosis

(fatter tails) in the phenotype distribution. Thus, it is logical that the RINT, which reshapes away

excess kurtosis without reference to its source, should have both beneficial and harmful properties.

In the case where there is no known driver of BVH, a scenario represented by the simulations

examining CaoV, the RINT procedure acts like an insurance policy: if there truly is no BVH, the test

suffers a modest decrease in power; but if there truly is BVH from an unknown source, it averts the

drastic FPR inflation under the standard (i.e., non-empirical) p-value procedure.

In the case where the major BVH drivers are known, represented by the DGLMV simulations,

the RINT procedure is unnecessary, costing power with its conservatism in the absence of BVH and

paradoxically creating even more conservative behavior in the presence of BVH.

The above disadvantages of RINT assume the phenotype data has an underlying normal distri-

bution, either as given or after a simple (e.g., power) transformation. When this is not so, that is,

in cases of highly non-normal data, valid inference would be possible by both the RINT and the

locusperm procedure, and perhaps the most robust approach would be to use the two in combination.

Nonetheless, where normality approximately holds, whether as given or after a simple transformation,

we strongly prefer the locusperm procedure without RINT: across all simulation scenarios it exhibited
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at worst slight conservatism when applied to DGLM-based tests and represents a useful step toward

FWER control.

2.6 Additional Information

2.6.1 Simulation Details:

In simulation with BVH present, the group-wise effects on the log standard deviation were

γ = [−0.4,−0.2, 0, 0.2, 0.4]. Though γ = 0, the exponential transform connecting these effects to

the standard deviation results in a simulated phenotype with slightly more total variance than one

without BVH. Therefore, the additive effect of the locus on phenotype mean was adjusted when BVH

was introduced, in order to maintain a constant percent variance explained by the mean effect. The

following values were used in the simulation.

no BVH yes BVH
null α = 0, θ = 0 α = 0, θ = 0

mQTL α = 0.22, θ = 0 α = 0.25, θ = 0
vQTL α = 0, θ = 0.17 α = 0, θ = 0.17

mvQTL α = 0.18, θ = 0.14 α = 0.2, θ = 0.136

null locus and mQTL in the absence of BVH: All observations have standard deviation 1.

vQTL in the absence of BVH: The genotype-wise standard deviations implied by the additive

effect of 0.17 on the log standard deviation are approximately: [0.84, 1.00, 1.19].

mvQTL in the absence of BVH: The genotype-wise standard deviations implied by the additive

effect of 0.14 on the log standard deviation are approximately: [0.87, 1.00, 1.15].

null locus and mQTL in the presence of BVH: The covariate-wise standard deviations implied by

the effects of [-0.4, -0.2, 0, 0.2, 0.4] on the log standard deviation are approximately: [0.67, 0.82,

1.00, 1.22, 1.49].

vQTL in the presence of BVH: Locus and covariate effects on the residual variance combine

additively on the log standard deviation scale, yielding 15 distinct standard deviations:

mvQTL in the presence of BVH: Locus and covariate effects on the residual variance combine

additively on the log standard deviation scale, yielding 15 distinct standard deviations:
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genotype

covar -1 0 1
1 0.57 0.67 0.79
2 0.69 0.82 0.97
3 0.84 1.00 1.19
4 1.03 1.22 1.45
5 1.26 1.49 1.77

genotype

covar -1 0 1
1 0.59 0.67 0.77
2 0.71 0.82 0.94
3 0.87 1.00 1.15
4 1.07 1.22 1.40
5 1.30 1.49 1.71
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2.6.2 ROC Curves
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(a) All test-evaluations accurately control FPR. DGLMM with BVH of known source is the most powerful test.
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(b) Within BVH scenarios, all mQTL tests perform equivalently.
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(c) DGLMM outperforms all other tests across all evaluation methods.

Figure 2.7: ROC Curves for mQTL tests in the detection of mQTL. The same 32 ROC curves are
plotted three times, organized by (a) test, (b) BVH scenario, and (c) version to allow for comparisons
across all dimensions.

44



Levene Caov DGLMv no covar DGLMv covar
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(a) Levene’s test accurately controls FPR in all scenarios.CaoV and DGLMV have inflated FPR in the presence
of BVH of unknown source. DGLMV’s RINT and residperm versions are anti-conservative in the presence of
BVH of known source.
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(b) In the absence of BVH, Levene’s test is less powerful than CaoV and DGLMV. In the face of BVH of
unknown source, all tests suffer decreased power, except DGLMV’s standard version, which fails to accurately
control FPR. In the scenario with BVH of known source, DGLMV recovers most of the power lost with
introduction of BVH, but its RINT and residperm versions are anti-conservative.
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(c) The only version of DGLMV that accurately controls FPR across all BVH scenarios is locusperm. Its
standard version is anti-conservative in the presence of BVH of unknown source and its RINT and residperm
versions are conservative in the presence of BVH of known source.

Figure 2.8: ROC Curves for vQTL tests in the detection of vQTL. The same 32 ROC curves are
plotted three times, organized by (a) test, (b) BVH scenario, and (c) version to allow for comparisons
across all dimensions.
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(a) CaoMV and DGLMMV both suffer a decrease in discrimination (down and right shift of ROC curve) in the
presence of BVH of unknown (or unmodeled) source. Only DGLMMV can accommodate the source when it is
known and therefore can achieve superior discrimination in that case. The standard and locusperm versions of
DGLMMV accurately control FPR.
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(b) In the absence of BVH, both mvQTL tests accurately control FPR and have similar power. In the presence
of BVH of unknown source, the standard version of both mvQTL tests is anti-conservative and the other
three versions maintain FPR control but suffer a decrease in power compared to the no-BVH scenario. Only
DGLMMV can incorporate information on the BVH-driving covariate. It achieves increased power and
accurately controls FPR in its standard and locusperm versions and is conservative in its RINT and locusperm
versions.
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(c) Only the locusperm version accurately controls FPR in all scenarios. The standard version of both tests
are anti-conservative in the presence of BVH of known source and the RINT and residperm versions are
conservative in DGLMMV the presence of BVH of known source.

Figure 2.9: ROC Curves for mvQTL tests in the detection of mvQTL. The same 24 ROC curves are
plotted three times, organized by (a) test, (b) BVH scenario, and (c) version to allow for comparisons
across all dimensions.
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2.6.3 QQ Plots
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Figure 2.10: The empirical false positive rate of each mQTL test-version for each nominal false
positive rate, α, in [0, 0.1]. A test that accurately controls FPR will have empirical FPR = α for all
value of α. All mQTL tests accurately control FPR.
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Figure 2.11: The empirical false positive rate of each vQTL test-version for each nominal false
positive rate, α, in [0, 0.1]. A test that accurately controls FPR will have empirical FPR = α for all
value of α. Amongst vQTL tests, CaoV has conservative behavior in the presence of BVH when
the standard procedure is used, and DGLMV has anti-conservative behavior when the RINT and
residperm procedures are used.
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Figure 2.12: The empirical false positive rate of each mvQTL test-version for each nominal false
positive rate, α, in [0, 0.1]. A test that accurately controls FPR will have empirical FPR = α for all
value of α. mvQTL tests show the same pattern of deviation from accurate FPR control as vQTL
tests (Figure 2.11), but to a lesser extent.
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2.6.4 False Positive Rates of mQTL tests

BVH absent BVH present

test version null mQTL vQTL mvQTL null mQTL vQTL mvQTL

LM standard 0.054 0.706 0.055 0.504 0.047 0.713 0.051 0.510
RINT 0.053 0.706 0.053 0.490 0.047 0.727 0.047 0.522
residperm 0.052 0.700 0.053 0.495 0.046 0.708 0.050 0.506
locusperm 0.051 0.698 0.054 0.494 0.046 0.708 0.050 0.506

CaoM standard 0.055 0.707 0.049 0.511 0.050 0.713 0.048 0.522
RINT 0.055 0.706 0.047 0.501 0.049 0.726 0.047 0.534
residperm 0.051 0.696 0.046 0.504 0.049 0.704 0.046 0.512
locusperm 0.050 0.693 0.046 0.499 0.046 0.699 0.045 0.510

DGLMM
no covar

standard 0.055 0.707 0.049 0.511 0.050 0.713 0.048 0.522
RINT 0.055 0.706 0.047 0.501 0.049 0.726 0.047 0.534
residperm 0.052 0.695 0.046 0.502 0.047 0.703 0.048 0.513
locusperm 0.051 0.693 0.044 0.500 0.047 0.700 0.044 0.509

DGLMM
with covar

standard 0.059 0.705 0.052 0.512 0.055 0.838 0.057 0.658
RINT 0.058 0.703 0.050 0.503 0.055 0.835 0.056 0.651
residperm 0.052 0.683 0.044 0.490 0.049 0.823 0.051 0.634
locusperm 0.051 0.680 0.045 0.485 0.046 0.821 0.049 0.630

Table 2.3: Positive rates of all four mQTL tests in all scenarios based on 10,000 simulations, 1,000
permutations each to estimate empirical null distributions (residperm and locusperm), and a cutoff of
p = 0.05. Note that in all cases the DGLM test without the covariate had identical or very nearly
identical FPR to the Cao test that tests for the same kind of QTL.
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2.6.5 False Positive Rates of vQTL tests

BVH absent BVH present

test version null mQTL vQTL mvQTL null mQTL vQTL mvQTL

Levene’s test standard 0.048 0.045 0.653 0.466 0.046 0.048 0.566 0.387
RINT 0.048 0.040 0.637 0.422 0.047 0.043 0.536 0.339
residperm 0.052 0.049 0.661 0.477 0.048 0.051 0.573 0.394
locusperm 0.051 0.050 0.661 0.475 0.048 0.050 0.573 0.393

CaoV standard 0.054 0.051 0.742 0.543 0.128 0.124 0.733 0.571
RINT 0.045 0.040 0.691 0.468 0.043 0.047 0.557 0.365
residperm 0.049 0.048 0.720 0.520 0.050 0.050 0.565 0.388
locusperm 0.048 0.048 0.718 0.517 0.048 0.048 0.559 0.382

DGLMVno covar standard 0.054 0.051 0.742 0.543 0.128 0.124 0.733 0.571
RINT 0.045 0.040 0.691 0.468 0.043 0.047 0.557 0.365
residperm 0.048 0.049 0.721 0.522 0.050 0.050 0.565 0.388
locusperm 0.047 0.048 0.718 0.519 0.049 0.049 0.559 0.381

DGLMV
with covar

standard 0.053 0.053 0.724 0.525 0.054 0.054 0.729 0.531
RINT 0.046 0.041 0.673 0.453 0.022 0.022 0.560 0.341
residperm 0.050 0.047 0.699 0.501 0.017 0.015 0.533 0.325
locusperm 0.049 0.048 0.698 0.501 0.049 0.050 0.700 0.498

Table 2.4: Positive rates of all four vQTL tests in all scenarios based on 10,000 simulations, 1,000
permutations each to estimate empirical null distributions (residperm and locusperm), and a cutoff of
p = 0.05. Note that in all cases the DGLM test without the covariate had identical or very nearly
identical FPR to the Cao test that tests for the same kind of QTL.
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2.6.6 False Positive Rates of mvQTL tests

BVH absent BVH present

test version null mQTL vQTL mvQTL null mQTL vQTL mvQTL

CaoMV standard 0.054 0.594 0.637 0.745 0.100 0.651 0.644 0.755
RINT 0.046 0.585 0.570 0.703 0.042 0.608 0.435 0.649
residperm 0.049 0.587 0.609 0.726 0.048 0.523 0.505 0.628
locusperm 0.049 0.588 0.611 0.728 0.047 0.523 0.504 0.630

DGLMMV
no covar

standard 0.054 0.594 0.637 0.745 0.100 0.651 0.644 0.755
RINT 0.046 0.585 0.570 0.703 0.042 0.608 0.435 0.649
residperm 0.050 0.588 0.610 0.728 0.047 0.524 0.503 0.632
locusperm 0.050 0.587 0.612 0.728 0.046 0.522 0.505 0.631

DGLMMV
with covar

standard 0.058 0.596 0.620 0.732 0.055 0.745 0.621 0.809
RINT 0.052 0.587 0.554 0.696 0.036 0.720 0.432 0.732
residperm 0.049 0.576 0.582 0.710 0.025 0.625 0.457 0.694
locusperm 0.051 0.577 0.582 0.712 0.049 0.731 0.591 0.790

Table 2.5: Positive rates of all three tests in all scenarios based on 10,000 simulations, 1,000
permutations each to estimate empirical null distributions (residperm and locusperm), and a cutoff of
p = 0.05. Note that in all cases the DGLM test without the covariate had identical or very nearly
identical FPR to the Cao test that tests for the same kind of QTL.

52



2.6.7 Cao’s Profile-Likelihood Approximation is Extremely Accurate

(a) null simulations
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(b) mQTL simulations
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(c) vQTL simulations
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(d) mvQTL simulations
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Figure 2.13: On simulated null loci, mQTL, vQTL, and mvQTL, Cao’s profile likelihood method
had identical likelihood ratio to DGLM when DGLM does not use any variance covariates.
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2.6.8 Cao’s Tests for All Phenotypes with BVH
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(a) Genome scan for bodyweight at twelve days
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(b) Genome scan for bodyweight at three weeks
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(c) Genome scan for bodyweight at six weeks
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(d) Genome scan for subcutaneous fat pad thickness at twelve weeks
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(e) Genome scan for gonadal fat pad thickness at twelve wees

Figure 2.14: Genome scans conducted with the DGLM, without accounting for effects of sex and
father on variance, shown by simulation to be identical to Cao’s tests (Figure 2.13, Table 2.3,
Table 2.4, and Table 2.5).
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2.6.9 DGLM Tests for All Phenotypes with BVH
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(a) Genome scan for bodyweight at twelve days
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(b) Genome scan for bodyweight at three weeks
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(c) Genome scan for bodyweight at six weeks
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(d) Genome scan for subcutaneous fat pad thickness at twelve weeks
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(e) Genome scan for gonadal fat pad thickness at twelve wees

Figure 2.15: Genome scans conducted with the DGLM, accounting for effects of sex and father on
variance.
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CHAPTER 3

Mean-Variance QTL Mapping Identifies Novel QTL for Circadian Activity and Exploratory
Behavior in Mice 1

3.1 Introduction

Here we demonstrate, with two real data examples available from the Mouse Phenome Database

(Bogue et al., 2015), that QTL mapping using the DGLM, which we term “mean-variance QTL

mapping” largely replicates the results of standard QTL mapping and detects additional QTL that the

traditional analysis does not.

3.2 Statistical Methods

3.2.1 Traditional QTL mapping based on the standard linear model (SLM)

The traditional approach to mapping a quantitative trait in an experimental cross with no

population structure (e.g. an F2 intercross or backcross) involves fitting, at each locus in turn, a linear

model of the following form. Letting yi denote the phenotype value of individual i, this phenotype is

modeled as

yi ∼ N(mi, σ
2) ,

where σ2 is the residual variance, and the expected phenotype mean, mi, is predicted by effects of

QTL genotype and, optionally, effects of covariates. In the reanalyses performed here, mi is modeled

to include a covariate of sex and additive and dominance effects of QTL genotype, that is,

mi = µ+ sexiβsex + aiβa + diβd ,

1This chapter has been adapted from a manuscript submitted to G3. The citation will be: Corty, RW., Kumar, V.,
Tarantino, L., Takahashi, JS., Valdar, W., 2018. Mean-Variance QTL Mapping Identifies Novel QTL for Circadian Activity
and Exploratory Behavior in Mice. G3: Genes, Genomes, Genetics.
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where µ is the intercept, βsex is the sex effect, with sexi indicating (0 or 1) the sex of individual i, and

βa and βd are the additive and dominance effects of a QTL whose genotype is represented by ai and

di defined as follows: when QTL genotype is known, ai is the count (0,1,2) of one parental allele,

and di indicates heterozygosity (0 or 1); when QTL genotype is inferred based on flanking marker

data, as is done here, ai and di are replaced by their corresponding probabilistic expectations (Haley

and Knott, 1992; Martı́nez and Curnow, 1992). The evidence for association at a given putative QTL

is based on a comparison of the fit of the model above with that of a null model that is identical

except for the QTL effects being omitted. These models and their comparison we henceforth refer to

as the standard linear model (SLM) approach.

3.2.2 Mean-variance QTL mapping based on the double generalized linear model (DGLM)

The statistical model underlying mean-variance QTL mapping, the double generalized linear

model (DGLM; Smyth 1989 and Rönnegård and Valdar 2011), elaborates the SLM approach by

modeling a potentially unique value of σ2 for each individual, as

yi ∼ N(mi, σ
2
i ) ,

where mi has the same meaning as in the SLM, but now σ2i is linked to its own linear predictor vi as

σi = exp(vi),

where the exponentiation ensures that σi is always positive, though vi is unconstrained. The linear

predictors for mi and vi are modeled as

mean: mi = µ+ sexiβsex + aiβa + diβd

log(variance): vi = µv + sexiγsex + aiγa + diγd

(3.1)

where µ, ai, di, sexi, and the β’s are as before, µv is an intercept representing the (log of the)

“baseline” residual variance, and γa, γd, and γsex are the effects of the QTL and covariates on vi.

The evidence for a QTL association is now defined through three distinct model comparisons,

corresponding to testing for an mQTL, a vQTL, or an mvQTL. In each case, the fit of the “full”
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model in Equation 3.1 is compared with that of a different fitted null: for the mQTL test, the null

model omits the QTL effects on the mean (i.e., βa = βd = 0); for the vQTL test, the null model

omits the QTL effects on the variance (i.e., γa = γd = 0); and for the mvQTL test, the null model

omits QTL effects on both mean and variance (i.e., βa = βd = γa = γd = 0). These tests are

detailed in chapter 2.

3.2.3 Genomewide significance and FWER-adjusted p-values

The model comparisons described above constitute the SLM test and the three DGLM-based

tests and each produces a likelihood ratio (LR) statistic. These LR statistics are converted to p-values

that are adjusted for the family-wise error rate (FWER) across loci, i.e., p-values on the scale of

genomewide significance. This adjustment is performed separately for each test by calculating an

empirical distribution for the LR statistic under permutation, much in the spirit of Churchill and

Doerge (1994) but with some modifications, namely that different tests have differently structured

permutations. Briefly, let Gi be the full set of genetic information for individual i, that is, the

genotypes or genotype probabilities across all loci. For the SLM and mvQTL tests, we define a

permutation as randomly shuffling the Gi’s across individuals; for the mQTL test, the permutations

apply this shuffle only to the genotype information in the full model’s mean component; for the vQTL

test, the permutations apply the shuffle only to the genotype information in the full model’s variance

component. For a given test, for each permutation we calculate LR statistics across the genome

and record the maximum; the maxima of over all permutations is fitted to a generalized extreme

value distribution, and the upper tail probabilities of this fitted distribution are used to calculated the

FWER-adjusted p-values for the LR statistics in the unpermuted data [see Dudbridge and Koeleman

2004, and, e.g., Valdar et al. 2006; more details in chapter 2]. An FWER-adjusted p-value can be

interpreted straightforwardly: it is the probability of observing an association statistic this large or

larger in a genome scan of a phenotype with no true associations.

3.2.4 Data Availability

All data and scripts used to conduct the analyses presented here and plot results are archived in

a public, static repository at with DOI: 10.5281/zenodo.1187195. Specifically, the raw data

files are:
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• 1 Kumar2014.csv The phenotype and genotype data from Kumar et al. (2013) that was

reanalyzed. This dataset is also available from the Mouse Phenome Database (Bogue et al.,

2015) at https://phenome.jax.org/projects/Kumar1.

• 4 Bailey2008.csv The phenotype and genotype data from Bailey et al. (2008) that was

reanalyzed. This dataset is also available from the Mouse Phenome Database at https:

//phenome.jax.org/projects/Bailey1.

• 9 actogram data The raw data on circadian activity from Kumar et al. (2013) that was

used to plot actograms

The analysis and plotting scripts are:

• 2 run Kumar scans.R This script runs genome scans with R/qtl and R/vqtl on the

data from Kumar et al. (2013).

• 3 plot Kumar scans.R This script plots the results of the reanalysis of Kumar et al.

(2013).

• 5 run Bailey scans.R This script runs genome scans with R/qtl and R/vqtl on the

data from Bailey et al. (2008).

• 6 plot Bailey scans.R This script plots the results of the reanalysis of Bailey et al.

(2008).

• 7 prune big files.R This script strips out redundant information from the results to

make the file size smaller to share more easily online.

• 8 power simulations.R This script runs the power simulation comparing the DGLM to

the SLM at the QTL identified in the Kumar reanalysis.

The results of running the analysis and plotting scripts are:

• Kumar scans 1000 perms.RDS This file contains the results of the reanalysis of Kumar

et al. (2013).

• Bailey scans 1000 perms.RDS This file contains the results of the reanalysis of Bailey

et al. (2008).
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• Kumar plots This directory contains the figures generated by 3 plot Kumar scans.R

(Figures 3.1, 3.2, and 3.6).

• Bailey plots This directory contains the figures generated by 6 plot Bailey scans.R

(Figures 3.4, 3.5, 3.10, 3.11, 3.12, and 3.13)

3.3 Reanalysis of Kumar et al. Reveals a new mQTL for Circadian Wheel Running Activity

3.3.1 Summary of Original Study

Kumar et al. (2013) intercrossed C57BL/6J and C57BL/6N, two closely-related strains of

C57BL6 that diverged in 1951, approximately 330 generations ago. Due to recent coancestry of

the parental strains, this cross is termed a “reduced complexity cross”, and their limited genetic

differences ensure that any identified QTL region can be narrowed to a small set of variants bioinfor-

matically. The intercross resulted in 244 F2 offspring, 113 female and 131 male, which were tested

for acute locomotor response to cocaine (20mg/kg) in the open field. One to three weeks following

psychostimulant response testing, the mice were tested for circadian wheel running activity.

Analysis of wheel running data was carried out using ClockLab software v6.0.36. For calculation

of activity 20 day epoch in DD was used in order to have standard display between actograms.

Analysis of other circadian measures such as period (tau) or amplitude were carried out using

methods previously described (Shimomura et al., 2001). All animal protocols were approved by the

Institutional Animal Care and Use Committee (IACUC) of the University of Texas Southwestern

Medical Center

Traditional QTL mapping with the SLM, reported in Kumar et al. (2013), detected a single

large-effect QTL for cocaine-response traits on chromosome 11, but no QTL for circadian activity. A

later study by another group nonetheless observed that the circadian activity of the two strains showed

significant differences (Banks et al., 2015). Though a difference in strain mean is not required for a

successful F2 intercross mapping experiment in general, it is a reassuring observation in the context

of a reduced complexity cross, where genetic differences are scant.
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Figure 3.1: Genome scan for Kumar et al. circadian wheel running activity. The horizontal axis shows
chromosomal location and the vertical axis shows FWER-controlling p-values for the association
between each genomic locus and circadian wheel running activity.

3.3.2 Reanalysis with traditional QTL mapping and mean-variance QTL mapping

For the cocaine response traits, traditional QTL mapping and mean-variance QTL mapping

gave results that were nearly identical to the originally-published analysis in Kumar et al. (2013)

(Figure 3.6).

For the circadian wheel running activity trait, however, traditional QTL mapping identified no

QTL (Figure 3.1 in green) but mean-variance QTL mapping identified one QTL on chromosome

6 (Figure 3.1 in blue, black, and red). In this case, all three tests were statistically significant, but

the most significant was the mQTL test (blue), so we discuss it as an mQTL. The most significant

genetic marker was rs30314218 on chromosome 6, at 18.83 cM, 40.0 Mb, with a FWER-controlling

p-value of 0.0063. The mQTL explains 8.4% of total phenotype variance by the traditional definition

of percent variance explained (e.g., Broman and Sen 2009).

3.3.3 Understanding the Novel QTL

Though they test for the same pattern, the mQTL test of mean-variance QTL mapping identified

a QTL where the traditional QTL test did not. This discordance may arise when there is variance

heterogeneity in the mapping population. In this case, mice homozygous for the C57BL/6N allele at

the mQTL have both higher average wheel running activity and lower residual variance in wheel

running activity than mice with other genotypes (Figure 3.2a).

The identification of this QTL by mean-variance QTL mapping but not traditional QTL mapping

can be understood by contrasting how the DGLM and SLM fit the data at this locus.

For the SLM, a single value of the residual standard deviation σ is estimated for all mice.

Approximately 25% of the mice are homozygous for the C57BL/6N allele, so σ is estimated mostly
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based on heterozygous mice and homozygous C57BL/6J mice. The SLM estimates σ̂ = 7.83, a slight

underestimate for some genotype-sex combinations, and a drastic overestimate for the homozygous

C57BL/6N of both sexes (Figure 3.2b). With σ overestimated for the C57BL/6N homozygotes,

the addition of a locus effect to the null model results in only a limited increase in the likelihood,

one that could reasonably be caused by chance alone. For the DGLM, six different values of σ are

estimated, one for each genotype-sex combination (Figure 3.2b). With an better-estimated (lower) σ̂

for the C57BL/6N homozygotes, the addition of the locus effect to the null model results in a greater

increase in the likelihood, one that is very unlikely due to chance alone.

A simulation based on the estimated coefficients shows that at a false positive rate of 5× 10−4,

relevant for genome-wide significance testing, the SLM has 61% power to reject the null at this locus

and the DGLM has 90% power (See file 8 power simulations.R).

3.3.4 Variant Prioritization

Reduced complexity crosses allow variant prioritization to proceed quickly because of the

number of segregating variants is small. Using 1000 nonparametric bootstrap resamples, the QTL

interval was estimated as 13.5-23.5 cM (90% CI), which translates to physical positions of 32.5 -

48.5 Mb using Mouse Map Converter’s sex averaged Cox map (Cox et al., 2009). Since this interval

contains no genes or previously identified QTL shown to regulate circadian rhythms, we prioritized

candidates by identifying variants between C57BL/6J and C57BL/6NJ based on Sanger mouse

genome database (Keane et al., 2011; Simon et al., 2013), which yielded 463 SNPs, 124 indels, and

3 structural variants (Table 3.1).

Of these variants, none of the indels or structural variants were nonsynonymous. Two SNPs

were predicted to lead to missense changes (T to A at position 6: 39400456 in Mkrn1, and A to A/C

at 6:48486716 in Sspo). The variant in Sspo was a very low confidence call and therefore likely a

false positive.

The Mkrn1 (makorin ring finger protein 1) variant is a mutation in C57BL/6J that changes a

highly conserved (Figure 3.8 and Figure 3.9) tyrosine to asparagine. It was determined to be the best

candidate variant in the QTL interval. The Mkrn1 protein is a ubiquitin E3 ligase with zinc finger

domains with poorly defined function (Kim et al., 2005). It is expressed at low levels widely in the

brain according to Allen Brain Atlas and EBI Expression Atlas (Kapushesky et al., 2009; McWilliam
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Figure 3.2: (a) Average wheel speed (revolutions/minute) of all mice. It is visually apparent
that female mice had higher circadian wheel running activity than male mice and that mice that
homozygous for C57BL/6N had higher circadian wheel running activity and less intra-genotype
variation. Large dots indicate the mice whose activity is shown in actogram form (Figure 3.3). (b)
Predicted mean and variance of mice according to sex and allele at the QTL. What was visually
apparent in (a) is captured by the DGLM. The estimated parameters relating to mice that are
homozygous for the C57BL/6N allele imply a higher expected value and a lower residual variance
than the other two genotype groups. Black x’s indicate the estimates from the SLM, very similar to
the DGLM estimates in the horizontal (mean) axis, but homogeneous in the vertical (variance) axis.

et al., 2013; Allen Institute for Brain Science, 2015; McWilliam et al., 2013). Functional analysis will

be necessary to experimentally confirm that this variant in Mkrn1 is indeed the causative mutation

that led, in a dominant fashion, to the decreased expected value and increased variance of circadian

wheel running activity observed in mice with at least one copy of the C57BL/6J haplotype in the

QTL region in this study.

3.4 Reanalysis of Bailey et al. Identifies a new vQTL for Rearing Behavior

3.4.1 Summary of Original Study

Bailey et al. (2008) intercrossed C57BL/6J and C58/J mice, two strains known to be phenotypi-

cally similar for anxiety-related behaviors, as a control cross for an ethylnitrosourea mutagenesis

mapping study. The intercross resulted in 362 F2 offspring, 196 females and 166 males. Six

open-field behaviors were measured at approximately 60 days of age in a 43cm by 43cm by 33cm

white arena for ten minutes. All phenotypes were transformed with the rank-based inverse normal
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Figure 3.3: Double-plotted actograms illustrate the variation in wheel running activity of male mice
based on their genotype at rs30314218. On reading a single actogram: An actogram illustrates the
activity of a single mouse over the course of an experiment. Each day of the experiment is represented
by a histogram, with bin width of six minutes. Histograms are stacked vertically. Additionally, each
day is shown twice (repeated horizontally) so that there is no time of day that is illegible due to the
plot edges. Yellow box indicates when lights were on. On reading this six-actogram plot: Recall
that the DGLM estimates a unique mean and standard deviation (SD) for each genotype. The mice
whose actograms are shown here had an activity level that is one genotype-specific SD greater than
(top) or less than (bottom) the genotype-specific mean. The difference between the two is much
less in the C57BL/6N homozygotes than in the other genotypes, reflecting the decreased phenotype
variance amongst C57BL/6N homozygotes. The animals shown in this figure are marked with large
blue circles in Figure 3.2a. A larger figure that also includes female mice as well as the ID’s of all
plotted mice are in the supplement (Figure 3.7 and Table 3.2).

location indel SNP SV Total
exon, missense – 2 – 2

intron, splice region 1 – – 1
intron, nonsynonymous 57 246 – 303

intron, synonymous – 1 – 1
3’ UTR – 3 – 3

upstream 6 29 – 35
downstream 7 20 – 27

intergenic 53 161 – 214
unclassified – 1 3 4

Table 3.1: Genetic Variants in QTL interval for circadian wheel running activity
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transform to limit the influence of outliers. The authors reported 7 QTL spread over five of the six

measured traits, but none for rearing behavior.

3.4.2 Reanalysis with SLM and DGLM

SLM-based QTL analysis replicated the originally-reported LOD curves. Significance thresholds

to control FWER at 0.05 were estimated by 10,000 permutations, using the method described in the

original publication, but found to be meaningfully higher than the originally-reported thresholds. Of

the 7 originally-reported QTL, 3 exceeded the newly-estimated thresholds (Figure 3.10).

The DGLM-based reanalysis was initially conducted with the rank-based inverse normal trans-

formed phenotypes, to maximize the comparability with the original study. This reanalysis largely

replicated the results of the SLM-based analysis and identified a statistically-significant vQTL for

rearing behavior on chromosome 2 (Figure 3.4 and Figure 3.10). The top marker under the peak was

at 38.6cM and 65.5Mb.

There are well-known and well-founded concerns that inappropriate scaling of phenotypes can

produce spurious vQTL (Rönnegård and Valdar, 2012; Sun et al., 2013; Shen and Ronnegard, 2013).

Therefore, the rearing phenotype was analyzed under a variety of additional transforms: none, log,

square root, and 1
4

th power (the transformation recommended by the Box-Cox procedure). Because

the trait is a “count” and a positive mean-variance correlation was observed, the trait was further

analyzed with a Poisson double generalized linear model with its canonical link function (log). In all

cases, the same genomic region on chromosome 2 was identified as a statistically significant vQTL

(p < 0.01) (Figure 3.11, Figure 3.12, and Figure 3.13). Though all transformations yielded similar

results, we highlight the Box-Cox transformed analysis recommended for transformation selection in

Rönnegård and Valdar (2011).

3.4.3 Understanding the Novel QTL

In this case, the DGLM-based analysis identified a vQTL, a pattern of variation across genotypes

not targeted by traditional, SLM-based, QTL analysis. The phenotype values, when stratified by

genotype at the top locus, illustrate clear variance heterogeneity (Figure 3.5a). The effects and their

standard errors estimated by the DGLM fitted at the top locus corroborate the impression from simply

viewing the data, that the locus is a vQTL but not an mQTL (Figure 3.5b).
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α = 0.05

α = 0.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X
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vQTL

mvQTL
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Rearing Events

Figure 3.4: Genome scan for Bailey et al. rearing behavior. The x axis shows chromosomal location
and the y axis shows FWER-controlling p-values for the association between each genomic locus
and the Box-Cox transformed rearing behavior.
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Figure 3.5: (a) “Total Rearing Events”, transformed by the Box-Cox procedure, stratified by sex and
genotype at the top marker. (b) Predicted mean and variance of mice according to sex and allele at
the top marker.
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3.5 Discussion

We have demonstrated through two case studies that mean-variance QTL mapping based on

the DGLM expands the range of QTL that can be detected, including both mQTL at loci that

exhibit variance heterogeneity and vQTL. In an era where ever more complete and complex data on

biological systems is becoming available, this modest elaboration of an existing approach represents

a step toward the broader goal of characterizing the wide array of patterns of association between

genotype, environment, and phenotype.

In the reanalysis of Kumar et al., mean-variance QTL mapping identified the same QTL as

traditional, SLM-based QTL mapping for cocaine response traits and one novel mQTL for a circadian

behavior trait. Such an mQTL would likely have been detected by a traditional QTL analysis with a

larger mapping population: Through simulation, we estimated that the additional power to detect the

mQTL was equivalent to the power increase that would have come from increasing the sample size

by ≈100 mice, from 244 to ≈ 350 (See file 8 power simulations.R). Given the considerable

effort and expense associated with conducting an experimental cross or expanding the size of the

mapping population, there seems to be little to be gained by omitting a DGLM-based analysis.

In the reanalysis of Bailey et al., mean-variance QTL mapping identified a novel vQTL for an

exploratory behavior. A vQTL such as this would not be detected by the traditional QTL analysis no

matter how large the mapping population because the pattern is entirely undetectable by the SLM.

The identification of a vQTL raises important issues related to phenotype transformation and the

interpretation of findings, but both are manageable, as we have illustrated here. The criticism that a

spurious vQTL can arise as the result of an inappropriate transformation is based on the observation

that when genotype means are unequal, there always exists a (potentially exotic) transformation that

diminishes the extent of variance heterogeneity (Sun et al., 2013). Thus, any other transformation

(including none at all) can be seen as inflationary toward variance heterogeneity. In this context,

however, an “inappropriate transformation” leads not to the misclassification of a non-QTL as a QTL,

but an mQTL as a vQTL.

To the extent that the goal of QTL mapping is to understand the genetic architecture of a trait,

this criticism is valid and should be addressed by considering a wide range of transformations,

alternative models, and parameterizations. To the extent that the goal of QTL mapping is to identify
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genomic regions that contain genes and regulatory factors that influence a trait, we argue that such a

misclassification is largely irrelevant. Whether we pursue bioinformatic follow-up to identify QTN

in a region because it was identified as an mQTL or a vQTL need not change our downstream efforts.

In summary, we advocate for the use of mean-variance QTL mapping not as an additional flourish

to consider after conducting an SLM-based QTL mapping effort, but rather as a drop-in replacement.

This approach should not be too alien — when variance heterogeneity is absent, it simplifies to the

well-known SLM-based approach. Full-featured software that implements this approach is described

in chapter 4.

Lastly, we note an additional benefit conferred by mean-variance QTL mapping not discussed

in depth here. Variance heterogeneity can also derive from factors acting in the “background”,

that is, arising from experimental or biological variables that are outside the main focus of testing

but that nonetheless predict phenotypic variability and thereby inform the relative precision of one

individual’s phenotype over another. In the case studies presented here, the only background factor

considered was sex. But, more generally, any factor that a researcher considers as a potentially

important covariate that should be modeled can be included not only as a mean covariate (as with

the SLM) but also as a variance covariate. In chapter 2, we describe how accommodating such

background factors can deliver additional power to detect mQTL, vQTL, and mvQTL.
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3.6 Additional Information

3.6.1 Additional Information on Kumar Reanalysis

α = 0.05

α = 0.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−
lo

g1
0(

p)

mQTL

vQTL

mvQTL

traditional

30 minute Cocaine Response

α = 0.05

α = 0.01
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−
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mQTL

vQTL

mvQTL

traditional

60 minute Cocaine Response

Figure 3.6: Replicated scans from Kumar et al. (2013)

Table 3.2: The characteristics of the mice plotted in Figure 3.3

genotype at
rs30314218

sex activity in the DD
(rev/min)

6J female 12.79
6J female 38.20
6J male 8.07
6J male 27.99
Het female 14.03
Het female 40.13
Het male 1.87
Het male 30.68
6N female 22.22
6N female 33.85
6N male 16.75
6N male 28.71
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Figure 3.7: Actograms, similar to Figure 3.3, including female mice. The mice depicted here are
highlighted with larger circles in Figure 3.2a.
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1       10        20        30        40        50        60X        X         X         X         X         X         X
sp|Q9UHC7|MKRN1_HUMAN                                         c           c cc  cc                                        A           DEEEF DE                                        A           G WT  VT                                                     G  K   MAEAATPGTTATTSGAGAAAATAAAASPTPIPTVTAPSLG GGGGGGSDGSG     Q  
sp|Q9QXP6|MKRN1_MOUSE                                         c           c cc  cc                                        B           KdddG Kd                                        A           G WT  VT                                                     G  K   MAEAAAPGTTATTSGAGAAAAAVAAASLTSIPTVAAPSPG GGGGGGSDGSG     Q  
sp|Q9TT91|MKRN1_MACEU                                         c           c cc  cc                                        B           KdddG Kd                                        A           G WT  VT                                                     G  K   MAEAAAPGTTATTS.GAAAAAAVAAASPTLTPTVASQSPA GGGGGGS...G     Q  
sp|Q5NU14|MKRN1_TAKRU                                         c           c cc  cc                                        B           KdddG Kd                                        A           G WT  VT                                                     G  K   .....................................MAE AVASTVTLPVT     H  
sp|Q4SRI6|MKRN1_TETNG                                         c           c cc  cc                                        B           KdddG Kd                                        A           G WT  VT                                                     G  K   .....................................MAE AVASTVTLPVS     H  
sp|Q8JFF3|MKRN1_SERQU                                         c           c cc  cc                                        B           KdddG Kd                                        A           G WT  VT                                                     G  K   .....................................MAE AAASTAASGVI     H  
sp|Q4VBT5|MKRN1_DANRE                                         c           c cc  cc                                        B           KdddG Kd                                        A           G WT  VT                                                     G  K   .....................................MAE AAASTAAPAVI     H  
sp|Q6GLT5|MKRN1_XENLA                                         c           c cc  cc                                        C           JIIIH JI                                        A           G WT  VT.....................MAEAAAAPALLTSAASAGK PLPAFPENPPV V  RH  

        70        80         90       100       110                  X         X          X         X         X         
sp|Q9UHC7|MKRN1_HUMAN cccc cc cc c cccccccc         c   c c c  c ccc  c cc        EEEEEEF DEEF DEEEEEEF  A    A DF DF A A  DEEEF DF DF A DF   CRYF HG CK G NCRYSHDL         C   Q G C  G RCR  H KP            M     E            S       K F        D    E     K EE          V    D        SD P.YSVV  Y  R Y IY     Y  S  L Q  ATA
sp|Q9QXP6|MKRN1_MOUSE cccc cc cc c cccccccc         c   c c c  c ccc  c cc        ddddddG KddG KddddddG  B    B KG KG B B  KdddG KG KG B KG   CRYF HG CK G NCRYSHDL         C   Q G C  G RCR  H KP            M     E            S       K F        D    E     K EE          V    D        SD P.YGVV  Y  R Y VY     Y  S  L Q  VTA
sp|Q9TT91|MKRN1_MACEU cccc cc cc c cccccccc         c   c c c  c ccc  c cc        ddddddG KddG KddddddG  B    B KG KG B B  KdddG KG KG B KG   CRYF HG CK G NCRYSHDL         C   Q G C  G RCR  H KP            M                  S    M             D    E     K EE          V  K N        ST Q.SA V RYY R C AY     Y  T  L R  VTA
sp|Q5NU14|MKRN1_TAKRU cccc cc cc c cccccccc         c   c c c  c ccc  c cc        ddddddG KddG KddddddG  B    B KG KG B B  KdddG KG KG B KG   CRYF HG CK G NCRYSHDL         C   Q G C  G RCR  H KP            M     E            S    M  K F             E     K EE          L    D        TS KPAA M  F  K N VF E   F  C  T S  VSN
sp|Q4SRI6|MKRN1_TETNG cccc cc cc c cccccccc         c   c c c  c ccc  c cc        ddddddG KddG KddddddG  B    B KG KG B B  KdddG KG KG B KG   CRYF HG CK G NCRYSHDL         C   Q G C  G RCR  H KP            M     E            S    M  K F                   K EE          L    D        TN KPAA I  F  K N VF E   FD C  T N  FSS
sp|Q8JFF3|MKRN1_SERQU cccc cc cc c cccccccc         c   c c c  c ccc  c cc        ddddddG KddG KddddddG  B    B KG KG B B  KdddG KG KG B KG   CRYF HG CK G NCRYSHDL         C   Q G C  G RCR  H KP            M     E            S    M  K F        D    E     K EE          L    D        TN KPAA I  F  K N VF     F  C  A N  LPA
sp|Q4VBT5|MKRN1_DANRE cccc cc cc c cccccccc         c   c c c  c ccc  c cc        ddddddG KddG KddddddG  B    B KG KG B B  KdddG KG KG B KG   CRYF HG CK G NCRYSHDL         C   Q G C  G RCR  H KP            M     E                 M  K F        D    E     K  E          L    E        SSCK.QT I  F  K C AF     Y  T  S QD VPS
sp|Q6GLT5|MKRN1_XENLA cccc cc cc c cccccccc         c   c c c  c ccc  c cc        IIIIIIH JIIH JIIIIIIH  C    C JH JH C C  JIIIH JH JH C JH   CRYF HG CK G NCRYSHDL         C   Q G C  G RCR  H KP                  E            S    M    F        D    E                I  V    I        AT R.SA I RY  R C AY     Y  N  LQEDPTGD

120       130       140       150       160       170         X         X         X         X         X         X         
sp|Q9UHC7|MKRN1_HUMAN                                              cc cc cccccc c                 A                            DEEEF DEEEEEEEE                                             DW NA EFVPGQ Y                 S                              V         P CTELTTKSSLAASSSLS IVGPLVEMNTGEAESRNSNFATVGAGSE     I         
sp|Q9QXP6|MKRN1_MOUSE                                              cc cc cccccc c                 B                            KdddG Kdddddddd                                             DW NA EFVPGQ Y                 S                              V         P CTDLSAKPSLAASSSLS GVGSLAEMNSGEAESRNPSFPTVGAGSE     I         
sp|Q9TT91|MKRN1_MACEU                                              cc cc cccccc c                 B                            KdddG Kdddddddd                                             DW NA EFVPGQ Y                                                V         P CANLAAKSDLPASSSLPALVEPLAEVSTGEAESVNSNFAAAGAGGE     I         
sp|Q5NU14|MKRN1_TAKRU                                              cc cc cccccc c                 B                            KdddG Kdddddddd                                             DW NA EFVPGQ Y                 S                                        P CPQ.......MLLL..S TPPPIDPECSESGPRL.........KTQ  A  A         
sp|Q4SRI6|MKRN1_TETNG                                              cc cc cccccc c                 B                            KdddG Kdddddddd                                             DW NA EFVPGQ Y                 S                                        P CPQ.......MLPP..S PSPSTDPESSQPAPRP.........KTQ  A  A         
sp|Q8JFF3|MKRN1_SERQU                                              cc cc cccccc c                 B                            KdddG Kdddddddd                                             DW NA EFVPGQ Y                 S                              V         P CPQ.......MLPLPSA LAGPSDPEPSGPTPVP.........GAQ     A         
sp|Q4VBT5|MKRN1_DANRE                                              cc cc cccccc c                 B                            KdddG Kdddddddd                                             DW NA EFVPGQ Y                                                V         P CSKP......SMPLTAAPLAGTPEPVSDGPGGTTGAQEKPQGSGAV     A         
sp|Q6GLT5|MKRN1_XENLA                                              cc cc cccccc c                 C                            JIIIH JIIIIIIII                                             DW NA EFVPGQ Y                 S                              V            TCT.........APSE LPEPSGNINSKAAELAASELASGGPRAQ     V      L S

180       190       200       210       220       230         X         X         X         X         X         X         
sp|Q9UHC7|MKRN1_HUMAN cc                             cccccccc cccccc cc ccccc c ccEEF     A                   A  DEEEEEEEEEEEEEF DF DEEEF DEEEGR                             KQLCPYAA GECRYG NC YLHGD C MC        E                   E          V                 D    TAPSCT APLQGSVTKEESEKEQTAV TK               E  V     S    
sp|Q9QXP6|MKRN1_MOUSE cc                             cccccccc cccccc cc ccccc c ccddG     B                   B  KdddddddddddddG KG KdddG KdddGR                             KQLCPYAA GECRYG NC YLHGD C MC        E                   E          V                 D    TAPSCT VPPQGSVTKEESEKEPTTV TK               E  V     S    
sp|Q9TT91|MKRN1_MACEU cc                             cccccccc cccccc cc ccccc c ccddG     B                   B  KdddddddddddddG KG KdddG KdddGR                             KQLCPYAA GECRYG NC YLHGD C MC  A     E                   E          V                 D     APSCT APLQGMVIEEELEKQQTNV MK               E  V     A    
sp|Q5NU14|MKRN1_TAKRU cc                             cccccccc cccccc cc ccccc c ccddG     B                   B  KdddddddddddddG KG KdddG KdddGR                             KQLCPYAA GECRYG NC YLHGD C MC  A     E                   E          V                 D     ESVDV ISIP.LIEELNGDATTDKE LR               V  A     V    
sp|Q4SRI6|MKRN1_TETNG cc                             cccccccc cccccc cc ccccc c ccddG     B                   B  KdddddddddddddG KG KdddG KdddGR                             KQLCPYAA GECRYG NC YLHGD C MC  A     E                              V                 D     ESVKV ISIP.LIEELDCDAAVDKEALR               I  A     V    
sp|Q8JFF3|MKRN1_SERQU cc                             cccccccc cccccc cc ccccc c ccddG     B                   B  KdddddddddddddG KG KdddG KdddGR                             KQLCPYAA GECRYG NC YLHGD C MC  A     E                              V                       EQAKV SSVP.LIEEFDSYPAPDNKQLR               I  A     V Y  
sp|Q4VBT5|MKRN1_DANRE cc                             cccccccc cccccc cc ccccc c ccddG     B                   B  KdddddddddddddG KG KdddG KdddGR                             KQLCPYAA GECRYG NC YLHGD C MC  A     E                   E          V                 D     DPVLC GPGP.LIEEEYEKEQAN.K MK               L  A     V    
sp|Q6GLT5|MKRN1_XENLA cc                             cccccccc cccccc cc ccccc c ccIIH     C                   C  JIIIIIIIIIIIIIH JH JIIIH JIIIGR                             KQLCPYAA GECRYG NC YLHGD C MC  A                         E                            D     PEAYTQGTVK....PDEGREEPADP LK        M      E  V     P    

240       250       260       270       280       290         X         X         X         X         X         X         
sp|Q9UHC7|MKRN1_HUMAN ccccccc c  ccc c   cccccccccc ccc cc cc  cc ccccc cc cccccccEEEEEEF A  DEEEF A DEEEEEEEEF DEF DEEEEF DF DEEEF DEEEEEEEEEGLQVLHP D  QRS H   CIEAHEKDME SFA QR KD  CG CMEVV EK NPSERRF              Q  K                  S  M            A              M AA     I S          L   V      V  I     Y          
sp|Q9QXP6|MKRN1_MOUSE ccccccc c  ccc c   cccccccccc ccc cc cc  cc ccccc cc cccccccddddddG B  KdddG B KddddddddG KdG KddddG KG KdddG KdddddddddGLQVLHP D  QRS H   CIEAHEKDME SFA QR KD  CG CMEVV EK NPSERRF              Q  K                     M            A              V AA     I S          L   V  T   V  I     Y          
sp|Q9TT91|MKRN1_MACEU ccccccc c  ccc c   cccccccccc ccc cc cc  cc ccccc cc cccccccddddddG B  KdddG B KddddddddG KdG KddddG KG KdddG KdddddddddGLQVLHP D  QRS H   CIEAHEKDME SFA QR KD  CG CMEVV EK NPSERRF              Q  K                  S  M            A              V AA     I S          L   V      V  I     Y          
sp|Q5NU14|MKRN1_TAKRU ccccccc c  ccc c   cccccccccc ccc cc cc  cc ccccc cc cccccccddddddG B  KdddG B KddddddddG KdG KddddG KG KdddG KdddddddddGLQVLHP D  QRS H   CIEAHEKDME SFA QR KD  CG CMEVV EK NPSERRF                 K                  S  M            A              T SS   E T A          I   I      M  V     F          
sp|Q4SRI6|MKRN1_TETNG ccccccc c  ccc c   cccccccccc ccc cc cc  cc ccccc cc cccccccddddddG B  KdddG B KddddddddG KdG KddddG KG KdddG KdddddddddGLQVLHP D  QRS H   CIEAHEKDME SFA QR KD  CG CMEVV EK NPSERRF              Q  K                  S  M            A              T NS     T A          I   I      M  V     F          
sp|Q8JFF3|MKRN1_SERQU ccccccc c  ccc c   cccccccccc ccc cc cc  cc ccccc cc cccccccddddddG B  KdddG B KddddddddG KdG KddddG KG KdddG KdddddddddGLQVLHP D  QRS H   CIEAHEKDME SFA QR KD  CG CMEVV EK NPSERRF                 K                  S  M            A              T NN   E T A          I   I      M  V     F          
sp|Q4VBT5|MKRN1_DANRE ccccccc c  ccc c   cccccccccc ccc cc cc  cc ccccc cc cccccccddddddG B  KdddG B KddddddddG KdG KddddG KG KdddG KdddddddddGLQVLHP D  QRS H   CIEAHEKDME SFA QR KD  CG CMEVV EK NPSERRF              Q                     S  M                           S TS     IRA          I   I      M  V     F  T       
sp|Q6GLT5|MKRN1_XENLA ccccccc c  ccc c   cccccccccc ccc cc cc  cc ccccc cc cccccccIIIIIIH C  JIIIH C JIIIIIIIIH JIH JIIIIH JH JIIIH JIIIIIIIIIGLQVLHP D  QRS H   CIEAHEKDME SFA QR KD  CG CMEVV EK NPSERRF              Q  K                  S                              V TC     I S          L   V     IV  I     Y  T       

300       310       320       330       340       350         X         X         X         X         X         X         
sp|Q9UHC7|MKRN1_HUMAN cccccc c cccccccccccccccccccccccccccccccc cccccccc c  c  cc EEEEEF A DEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEF DF DEEEEEGILSNC H YCLKCIRKWRSAKQFESKIIKSCPECRITSNF IPSEYWVE K  K  LI                                          V          E  QK         N T                                         E  E     L
sp|Q9QXP6|MKRN1_MOUSE cccccc c cccccccccccccccccccccccccccccccc cccccccc c  c  cc dddddG B KdddddddddddddddddddddddddddddddddddddddG KG KdddddGILSNC H YCLKCIRKWRSAKQFESKIIKSCPECRITSNF IPSEYWVE K  K  LI                                          V          E  QK  Q      N T                                         E  E      
sp|Q9TT91|MKRN1_MACEU cccccc c cccccccccccccccccccccccccccccccc cccccccc c  c  cc dddddG B KdddddddddddddddddddddddddddddddddddddddG KG KdddddGILSNC H YCLKCIRKWRSAKQFESKIIKSCPECRITSNF IPSEYWVE K  K  LI                                          V          E  QK  Q      N T                                         E  E      
sp|Q5NU14|MKRN1_TAKRU cccccc c cccccccccccccccccccccccccccccccc cccccccc c  c  cc dddddG B KdddddddddddddddddddddddddddddddddddddddG KG KdddddGILSNC H YCLKCIRKWRSAKQFESKIIKSCPECRITSNF IPSEYWVE K  K  LI                                          V          E  QK  Q      S C                                         D  D      
sp|Q4SRI6|MKRN1_TETNG cccccc c cccccccccccccccccccccccccccccccc cccccccc c  c  cc dddddG B KdddddddddddddddddddddddddddddddddddddddG KG KdddddGILSNC H YCLKCIRKWRSAKQFESKIIKSCPECRITSNF IPSEYWVE K  K  LI                                          V          E  QK  Q      N C                                         D  D      
sp|Q8JFF3|MKRN1_SERQU cccccc c cccccccccccccccccccccccccccccccc cccccccc c  c  cc dddddG B KdddddddddddddddddddddddddddddddddddddddG KG KdddddGILSNC H YCLKCIRKWRSAKQFESKIIKSCPECRITSNF IPSEYWVE K  K  LI                                          V             QK  Q      S C                                         D DD      
sp|Q4VBT5|MKRN1_DANRE cccccc c cccccccccccccccccccccccccccccccc cccccccc c  c  cc dddddG B KdddddddddddddddddddddddddddddddddddddddG KG KdddddGILSNC H YCLKCIRKWRSAKQFESKIIKSCPECRITSNF IPSEYWVE K  K  LI                                          V          E  Q   Q      C C                                         D  E  Q   
sp|Q6GLT5|MKRN1_XENLA cccccc c cccccccccccccccccccccccccccccccc cccccccc c  c  cc IIIIIH C JIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIH JH JIIIIIGILSNC H YCLKCIRKWRSAKQFESKIIKSCPECRITSNF IPSEYWVE K  K  LI                                                     E   K         S S                                I        E  E H   H

Figure 3.8: Page one of Mkrn1 alignment. Note that the amino acid at position 346 is conserved
across all species. See next page for species labels.
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360       370       380       390         400       410       

sp|Q9UHC7|MKRN1_HUMAN KYK  M  K CRYFDEGRG CPFG NCFY HA PDGR EE  P                                              K             QR   G S R R  RR    EA SN A         S    G       Y    R  ..   QKV T S Y AQ  N
sp|Q9QXP6|MKRN1_MOUSE KYK  M  K CRYFDEGRG CPFG NCFY HA PDGR EE  P                                              K             QR   G S R R  RR    EA SN A         S    G       Y    R  ..   QKV T S Y AQ  S
sp|Q9TT91|MKRN1_MACEU KYK  M  K CRYFDEGRG CPFG NCFY HA PDGR EE  P                                              K             QR   G S R R  RR    EA SN P         S    G       Y    R  ..   QKV T N Y AQ  N
sp|Q5NU14|MKRN1_TAKRU KYK  M  K CRYFDEGRG CPFG NCFY HA PDGR EE  P                                              K             QR   G S R R  RR    DG GR P         I    A       F    L  AQ   RQT S S N NS  T
sp|Q4SRI6|MKRN1_TETNG KYK  M  K CRYFDEGRG CPFG NCFY HA PDGR EE  P                                              K             QR   G S R R        DG GR P         I    A       F    L  AQ   RQT S S N .....
sp|Q8JFF3|MKRN1_SERQU KYK  M  K CRYFDEGRG CPFG NCFY HA PDGR EE  P                                              K             QR   G   R R  RR    DG GS P         T    S       F    L  AQ   RQT SNS N NS  T
sp|Q4VBT5|MKRN1_DANRE KYK  M  K CRYFDEGRG CPFG NCFY HA PDGR EE  P                                              K             QR   G   R R  RR    DG GT P         T    A       F    L  PQ   RQN SNG N NT  T
sp|Q6GLT5|MKRN1_XENLA KYK  M  K CRYFDEGRG CPFG NCFY HA PDGR EE  P                                                                   S            EA SS S         T    G    R  Y    I  PQ RQKSGMS .........

420       430       440       450       460       470       

sp|Q9UHC7|MKRN1_HUMAN                                     AG                        W    ERE     DN   E V FEL EMLLMLLA   D      E           D HF ELIE   NSNPF  DEE V T   G          G DELTDS DEWDLFHDELE F
sp|Q9QXP6|MKRN1_MOUSE                                     AG                        W    ERE     DN   E V FEL EMLLMLLA   D      E           D HF ELIE   N.NPF  DEE V T   G          G DELTDS DEWDLFHDELE F
sp|Q9TT91|MKRN1_MACEU                                     AG                        W    ERE     DN   E V FEL EMLLMLLA   D      E           D RF ELIE   SSNPF  DED V T   G          G DDLTDP DEWDLFHDELE Y
sp|Q5NU14|MKRN1_TAKRU                                     AG                        W    ERE     DN   E V FEL EMLLMLLA   D      E           D QL DIID   STGSL  DDE M T   S          N EEVTDS DEWDLFHEELD F
sp|Q4SRI6|MKRN1_TETNG                                     AG                                                L EMLLMLLA                        .......................... S          D.....................
sp|Q8JFF3|MKRN1_SERQU                                     AG                        W    ERE     DN   E V FEL EMLLMLLA   D                  D PL DIYD   STDSF  EDE M T   S          T DEEVIIRPPSCATSSGRL P
sp|Q4VBT5|MKRN1_DANRE                                     AG                        W    ERE     DN   E V FEL EMLLMLLA   D      E           D HL DLLD   NSDSF  EDE M R   S          T DDVTDS DEWDLFHEELD Y
sp|Q6GLT5|MKRN1_XENLA                                     AG                                                             D      E             ............................RYRIPSPS  I FGSLTS RAETRLRTRKTKL

480                                                         

sp|Q9UHC7|MKRN1_HUMAN YDLDL....                                                   
sp|Q9QXP6|MKRN1_MOUSE YDLDL....                                                   
sp|Q9TT91|MKRN1_MACEU YDLDL....                                                   
sp|Q5NU14|MKRN1_TAKRU YEIYL....                                                   
sp|Q4SRI6|MKRN1_TETNG .........                                                   
sp|Q8JFF3|MKRN1_SERQU TVTRYRKAC                                                   
sp|Q4VBT5|MKRN1_DANRE YELYL....                                                   
sp|Q6GLT5|MKRN1_XENLA .........                                                   

 

Figure 3.9: Page two of Mkrn1 alignment.
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3.6.2 Additional Information on Bailey Reanalysis
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Figure 3.10: Replication of genome scans from original Bailey analysis. LOD curves are visually
identical to originally-published LOD curves, but thresholds, estimated based on the described
methods, are meaningfully higher.
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Figure 3.11: DGLM-based reanalysis of all traits measured in Bailey et al., all transformed by the
rank-based inverse normal transform.
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Figure 3.12: DGLM-based reanalysis of all traits measured in Bailey et al., all transformed by the
Box-Cox transform. Box-Cox exponents were 1, 1, 0, 0.75, 0, 0.25, respectively.
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(a) “Rearing” trait analyzed with no transformation.
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(b) “Rearing” trait analyzed with square root transformation.
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(c) “Rearing” trait analyzed with log transformation.
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(d) “Rearing” trait analyzed with Poisson generalized linear model.

Figure 3.13: vQTL for TOTREAR phenotype on chromosome 2 is consistent across various trans-
forms.
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CHAPTER 4

vqtl: An R package for Mean-Variance QTL Mapping 1

4.1 Introduction

Here, we provide a practical guide to using the R package vqtl, which implements mean-

variance QTL mapping. First, to generate illustrative data, we simulate an F2 intercross and four

phenotypes: one phenotype determined entirely by random noise, and one with each of the three

kinds of QTL. On each phenotype we then conduct a genome scan using standard approximations to

interval mapping (Lander and Botstein, 1989; Martı́nez and Curnow, 1992), and mean-variance QTL

mapping, which includes a test for mQTL, a test for vQTL, and a test for mvQTL. The association

statistics of all four tests are then initially plotted in LOD score units, with drawbacks of this plotting

unit discussed. Permutation scans are used to determine empirically adjusted p-values, and plotting

in these units is shown to to make the results of the four tests more comparable. Last, we describe

plots to communicate the effects that led to the detection of a QTL, and use the bootstrap to estimate

its confidence interval.

4.2 Example data: Simulated F2 Intercross

To illustrate the use of the vqtl package, we first simulated an example F2 intercross using the

popular R/qtl package (Broman et al., 2003), on which vqtl is based. This cross consisted of

200 male and 200 female F2 offspring, with 3 chromosomes of length 100 cM, each tagged by 11

equally-spaced markers and estimated genotype probabilities at 2cM intervals with R/qtl’s hidden

Markov model. We then generated four phenotypes:

1. phenotype1 consists only of random noise and will serve as an example of negative results

for all tests.

1This chapter has been adapted from a manuscript submitted to G3. The citation will be: Corty, RW. and Valdar, W.,
2018. vqtl: An R package for Mean-Variance QTL Mapping. G3: Genes, Genomes, Genetics.

77



2. phenotype2 has an mQTL that explains 4% of phenotype variance at the center of chromo-

some one.

3. phenotype3 has a vQTL at the center of chromosome two. This vQTL acts additively on

the log standard deviation scale, and results in residual standard deviation of [0.8, 1, 1.25] for

the three genotype groups.

4. phenotype4 has an mvQTL at the center of chromosome three. This mvQTL has a mean

effect that explains 2.7% of phenotype variance and a variance effect that acts additively on

the standard deviation scale, resulting in residual standard deviation of [0.85, 1, 1.17] for the

three genotype groups.

We additionally consider phenotype1x through phenotype4x, which have the same type

of genetic effects as phenotype1 through phenotype4, but have the additional feature that

females have greater residual variance than males. All the same analyses and plots that are shown for

phenotype1 through phenotype4 are shown for phenotype1x through phenotype4x in

the appendix.

4.3 Scan the Genome

The central function for genetic mapping in package R/qtl is scanone (Broman et al.,

2003). Analogously, the central function for mean-variance QTL mapping in package vqtl is

scanonevar, building on an early version of scanonevar in package qtl. It takes three

required inputs:

1. cross is an object that contains the genetic and phenotypic information from an experimental

cross, as defined in package qtl.

2. mean.formula is a two-sided formula, specifying the phenotype to be mapped, the covari-

ates to be corrected for, and the QTL terms to be fitted, with keywords mean.QTL.add and

mean.QTL.dom

3. var.formula is a one-sided formula, specifying the variance covariates to be corrected for

as well as the QTL terms to be fitted, using keywords var.QTL.add and var.QTL.dom.
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For example, to scan a phenotype named p1, we run:

scanonevar(

cross = test_cross,

mean.formula = p1 ˜ sex + mean.QTL.add + mean.QTL.dom,

var.formula = ˜ sex + var.QTL.add + var.QTL.dom

)

At each locus in turn, this function tests for the presence of an mQTL, a vQTL, and an mvQTL. The

basis of these tests is a comparison between the fit of an alternative model of the form

mean = covariate effects + locus effects

log(variance) = covariate effects + locus effects

with a null model that omits specific terms: for the mQTL test, the null model omits locus effects on

phenotype mean; for the vQTL test, the null omits the locus effects on phenotype variance; and for

the mvQTL test, the null omits locus effects on both mean and variance. (Note that the mQTL test in

mean-variance QTL mapping is different from the traditional test: the traditional test does not have

variance predictors of any kind in either null or alternative models.)

4.3.1 LOD scores and nominal p-values

Each type of test (mQTL, vQTL, and mvQTL) yields two association statistics: the LOD score,

and the (nominal) p-value. The LOD is a raw measure of association equal to the base 10 logarithm

of the likelihood ratio (LR) between the fitted alternative and null models. Higher values indicate

greater association when considered across loci for the same type of test; but LOD scores between

different types of tests, namely between mvQTL test vs either mQTL or vQTL tests, are not readily

comparable. The p-value, which is comparable between different types of tests, transforms the LOD

score to take account of the number of parameters being fit: it is calculated from the asymptotic

distribution of 2 loge (LR) under the null model, namely the χ2 distribution with degrees of freedom

equal to the difference in the number of parameters between the alternative and null models.
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Figure 4.1: For each of the four simulated phenotypes, the genome scan shows the LOD score of
each test — mQTL, vQTL, and mvQTL — in blue, red, and black, respectively. The traditional test
is in green and globally similar to the mQTL test.
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The p-values described above, however, are nominal: they do not take into account multiple

testing across the genome. They also rely on asymptotic theory that assumes the underlying phenotype

being residually normal; this may not always be the case and when violated will lead to inflated

significance.

More robust p-values that are corrected for genomewide significance via control of the family-

wise error rate (FWER) can be obtained empirically, through a permutation procedure described

below.

4.3.2 Robust, genomewide-adjusted p-values

To calculate the empirical, FWER-controlled p-value of each test at each locus we advocate

use of a permutation procedure (chapter 2). Like previous work on permutation-based thresholds

for genetic mapping (Churchill and Doerge, 1994; Carlborg and Andersson, 2002), this procedure

sidesteps the need to explicitly estimate the effective number of tests.

In brief, this approach involves conducting many genomes scans on pseudo-null data generated

through permutation to maintain as much of the character of the data as possible, while breaking the

tested phenotype-genotype association. Specifically, the design matrix of the QTL is permuted in the

mean portion of the mQTL alternative model, the variance portion of the vQTL alternative model,

and in both portions of the mvQTL alternative model.

For each test (mQTL, vQTL, and mvQTL), the highest observed test statistic is extracted from

each permutation scan and the collection of statistics that results is used to fit a generalized extreme

value (GEV) density (Stephenson, 2002; Dudbridge and Koeleman, 2004; Valdar et al., 2006). The

observed LOD scores from the genome scan are then transformed by the cumulative distribution

function of the extreme value density to estimate the FWER-controlling p-values. This approach is

implemented in the function, scanonevar.perm, which requires two inputs:

1. sov is the scanonevar object, the statistical significance of which will be assessed through

permutation.

2. n.perms is the number of permutations to conduct.

The object returned by scanonevar.perm is a scanonevar object with two additional pieces

of information: an empirical p-value for each test at each locus and the per-permutation maxima
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Figure 4.2: For each of the four simulated phenotypes, the genome scan shows the -log10 of the
FWER-corrected p-value for each test — mQTL, vQTL, and mvQTL — in blue, red, and black,
respectively. The traditional test is in green and globally similar to the mQTL test. A value of 2
implies that the quantity of evidence against the null is such that we expect to see this much or more
evidence once per hundred phenotypes no QTL.
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that were used to calculate those p-values. These FWER-corrected p-values are straightforwardly

interpretable: p = 0.05 for a specific test at a specific locus implies that in 5% of similar experiments

where there is no true genotype-phenotype association, we would expect to observe some locus with

this much or more evidence of association in this test.

Accurate estimation of the FWER-controlled p-values requires many permutation scans: tradi-

tionally recommended is 1,000 (e.g., Churchill and Doerge 1994; Carlborg and Andersson 2002),

although the efficiency gain of using the GEV rather than raw quantiles means that fewer may be

adequate in practice (Valdar et al., 2006). These permutation scans can be run on multiple processors

by specifying the optional n.cores argument, which defaults to the total number of cores on the

computer minus 2. On an Intel Core i5, running 100 permutations on this dataset takes about five

minutes. When many phenotypes are studied, or if faster runtimes are needed, these permutation

scans can be broken into groups with different values for random.seed, run on separate computers,

and combined with the c function. This function combines the permutations from all the inputted

scans, re-estimates the extreme value density, re-evaluates the observed LOD scores in the context of

new extreme value density, and returns a new scanonevar object with more precisely estimated

empirical p-values.

4.3.3 Reporting and plotting genome scans

The results of scanonevar can be plotted by calling plot on the scanonevar output

object. This produces a publication-quality figure that shows the association of the phenotype for

each location in the genome as different colors for type of test, with y-axis scale being specified by

the user, via option plotting.units as the LOD (Figure 4.1), nominal p-value, or, provided

permutations have been run, empirical, FWER-controlling p-value (Figure 4.2). Of the available

y-axis scales, we recommend using the FWER-controlled p-values since this scale puts all tests on

a level-footing (unlike the LOD), and allows direct identification of genomewide significance and

thereby relevance (unlike the nominal p-value).

Calling summary on the output of scanonevar produces a summary of how the scan was

conducted and what the results were.
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Figure 4.3: mean var plots show the estimated genotype effects at a locus with mean effects on
the horizontal axis and variance effects on the vertical axis. Horizontal lines indicate standard errors
for mean effects and vertical lines indicate standard errors for variance effects. For phenotype1,
the pattern of overlapping estimates and standard errors is consistent with the fact that there are no
genetic effects, and the p-value was not statistically significant at any locus. For phenotype2,
the pattern of horizontal, but not vertical, separation visually illustrates the identified mQTL. For
phenotype3, the pattern of vertical, but not horizontal, separation visually illustrates the identified
vQTL. For phenotype4, the pattern of two-dimensional separation illustrates an mvQTL.

4.4 Communicate Significant Findings

Having identified interesting QTL, we want to visualize the their estimated genetic and covariate

effects. Because the vqtl package models effects for both mean and variance, existing plotting

utilities are not able to display the entirety of the modeling results. To understand and communicate

the results of a vqtl scan at one particular locus, we developed the mean var plot. This plot

illustrates how the mean sub-model and variance sub-model of the DGLM fit the data at a given

locus.
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In each mean var plot in Figure 4.3, the location of the dot shows the estimated mean and

standard deviation of each genotype group, with the mean indicated by the horizontal position and

the standard deviation indicated by the vertical position. The horizontal lines extending to the left

and right from each dot show the standard error of the mean estimate, and the vertical lines extending

up and down from each dot show the standard error of the standard deviation estimate. There are

two types of grouping factors considered by the function mean var plot model based: (1)

focal.groups are groups that are modeled and the prediction for each group is plotted. For exam-

ple, a genetic marker is the focal.group in each plot in Figure 4.3; D1M1 in the top left, D1M6

in the top right, D2M6 in the bottom left, and D3M6 in the bottom right. (2) nuisance.groups

are groups that are modeled, but then averaged over before plotting. When there are many grouping

factors thought to play a role in determining the mean and variance of an individual’s phenotype, such

as sex, treatment, and batch, we recommend putting just one or two in focal.groups and the

others in nuisance.groups for clarity, cycling through which are displayed to gain a thorough

understanding of the factors that influence the phenotype.

Additional plotting utilities, phenotype plot, effects plot and mean var plot model free

are described in the online documentation, available on CRAN.

4.5 Establish a Confidence Interval for the QTL

Last, it is important to assess the genetic precision of a discovered QTL for bioinformatic

follow-up. The function scanonevar.boot implements the non-parametric bootstrap (Visscher

et al., 1996). This function takes, as arguments, a scanonevar object, the type of QTL detected,

the name of the chromosome containing the QTL, and num.resamples, the number of bootstrap

resamplings desired. As with scanonevar.perm, the n.cores argument can be used to spread

the bootstraps over many computational cores and defaults to the number of cores available minus

two, and bootstraps can be run on separate computers and combined with c to increase the precision

of the estimate of the confidence interval.

We recommend 1000 resamples to establish 80% and 90% confidence intervals. With the datasets

simulated here, it takes 20 minutes to run 1000 bootstrap resamples on an Intel core i5.
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Figure 4.4: Time taken to run scanonevar.perm on the data from Kumar et al. (2013) which
contains 244 individuals and 582 loci, varying the number of permutations desired and the number of
computer cores used. For a given number of cores, there is a linear relationship between number of
permutations conducted and time required. The slope the line indicates time required per permutation
and is dependent on the number of cores, ranging from ≈ 6.3 seconds per permutation with 4 cores
to ≈ 1.2 second per permutation with 32 cores.

4.6 Performance Benchmarks

By far, the most computationally-intensive step in the mean-variance QTL mapping process is

the assessment of genome-wide statistical significance by permutation. The original genome scan

is much faster, because it involves only a single scan, and the bootstrap is much faster because it

involves only a single chromosome.

For the first benchmark, we ran scanonevar.perm on the data from Kumar et al. (2013) and

chapter 3, which contains 244 individuals and 582 loci, varying the number of permutations desired

and the number of computer cores used. For a given number of cores, there is a linear relationship

between number of permutations conducted and time required Figure 4.4. The slope the line indicates

time required per permutation and is dependent on the number of cores, ranging from ≈ 6.3 seconds

per permutation with 4 cores to ≈ 1.2 second per permutation with 32 cores.
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Figure 4.5: Time taken to run 1000 permutation scans on 32 cores on simulated data using
scanonevar.perm, varying the number of individuals in the mapping population and the number
of markers in the genome. For a given population size, there is a slightly supra-linear relationship
between number of markers and time required. The average slope of the line indicates the average
time required per locus and is dependent on the population size, ranging from ≈ 1.4 seconds per
locus with a population of size 100 to ≈ 3.3 seconds per locus with a population of size 800.

For the second benchmark, we ran scanonevar.perm on simulated data, always conducting

1000 permutations and using 32 cores, but varying the number of individuals in the mapping

population and the number of markers in the genome. For a given population size, there is a slightly

supra-linear relationship between number of markers and time required Figure 4.5, which reflects

a linear increase in the time taken to conduct the permuted genome scans, plus an increase in the

time taken for “bookkeeping” tasks like organizing and reshaping genetic data. The slope of the line

indicates the time required per locus and is dependent on the population size, ranging from ≈ 1.4

seconds per locus with a population of size 100 to ≈ 3.3 seconds per locus with a population of size

800.

Based on these benchmarks, it is clear that the workflow presented here is practical for QTL map-

ping F2 intercross and similar populations on modern, multi-core scientific computers. Populations
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with many recombinations, where dense genotyping arrays that interrogate > 10,000 loci are relevant,

could not be practically analyzed with package vqtl in this way. However, both statistical and

computational steps could be taken to make such a study feasible. Statistically, techniques could be

used that allow for large-scale analysis without permutation testing (Efron, 2004). Computationally,

the software could be changed to run on a computer cluster, rather than on a single computer (Jette

and Grondona, 2003; Marchand, 2017).

4.7 Conclusion

We have demonstrated typical usage of the R package vqtl for mean-variance QTL mapping in

an F2 intercross. This package is appropriate for crosses and phenotypes where genetic factors or

covariates or are known or suspected to influence phenotype variance. In the case of genetic factors,

they can be mapped, as illustrated in chapter 3. In the case of covariates, they can be accommodated,

which can increase power and improve false positive rate control, as illustrated in chapter 2.

4.8 Resources

The scripts used to simulate genotypes and phenotypes, conduct the genome scans, and plot the

results are available as a public, static Zenodo repository at DOI:10.5281/zenodo.1173799.

The package vqtl and its documentation are freely available on CRAN at https://CRAN.

R-project.org/package=vqtl.
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4.9 Phenotypes with Background Variance Heterogeneity
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Figure 4.6: For each of the four simulated phenotypes with background variance heterogeneity, the
genome scan shows the LOD score of each test – mean, variance, and joint – in blue, red, and black,
respectively. The traditional test is in green and globally similar to the mean test.
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Figure 4.7: For each of the four simulated phenotypes with background variance heterogeneity, the
genome scan shows the -log10 of the FWER-corrected p-value of each test – mean, variance, and
joint – in blue, red, and black, respectively. Thus, a value of 3 implies that the quantity of evidence
against the null is such that we expect to see this much or more evidence once per thousand genome
scans when there is no true effect.
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Figure 4.8: mean var plots show the estimated genotype effects at a locus, with mean effects on
the horizontal axis and variance effects on the vertical axis. Horizontal lines indicate standard errors
for mean effects and vertical lines indicate standard errors for variance effects. For phenotype1x,
the pattern of overlapping estimates and standard errors is consistent with the fact that there are no
genetic effects, and the p-value was not statistically significant at any locus. For phenotype2x,
the pattern of horizontal, but not vertical, separation visually illustrates the identified mQTL on a
background of variance heterogeneity. For phenotype3x, the pattern of vertical, but not horizontal,
separation visually illustrates the identified vQTL on a background of variance heterogeneity. For
phenotype4x, the pattern of two dimensional separation without either total horizontal or vertical
separation illustrates an mvQTL with neither mean nor variance effect strong enough to define an
mQTL or vQTL on a background of variance heterogeneity.
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CHAPTER 5

The Heteroscedastic Linear Mixed Model

This chapter deals with the linear mixed model (LMM). This statistical model can be applied

in association mapping and LD mapping in situations where all individuals in the population are

not equally-related. In such populations, population structure and cryptic relatedness break the

assumption of the standard linear model that all observations are independent, conditional on the

effects of the covariates. By estimating so called “random effects” with arbitrary covariance structure,

the LMM can accurately accommodate this differential relatedness and thereby maintain the validity

of the statistical inference. But, the additional complexity of the LMM relative to the SLM presents a

challenge as well — in studies with a large number of organisms and/or a large number of genetic

markers, the computational cost associated with using the LMM can be prohibitive.

This chapter proceeds as follows. In section 1, I describe a verbose form of the LMM that

emphasizes the meaning of each term in the model and describe how this model can be used to

conduct a GWAS. In section 2, I demonstrate a compact, but mathematically equivalent, form of

the LMM that will be used for the remainder of the chapter. In section 3, I illustrate how, given the

value of one parameter in the LMM (h2), it can be fit by the simpler generalized least squares (GLS)

procedure. In section 4, I illustrate how, given the value of one parameter in the GLS model (M),

it can be fit by the simpler ordinary least squares (OLS) procedure. In section 5, I describe how

these simplifications can be used to rapidly fit the LMM genome-wide. In section 6, I summarize

a previously published result that demonstrates how to rapidly calculate the necessary parameter

for the GLS-to-OLS simplification in the situation where the micro-environmental residuals are

homoskedastic. In section 7, I demonstrate a novel way to calculate the necessary parameter for the

GLS-to-OLS simplification that is valid whether the micro-environmental residuals are homoskedastic

or heteroskedastic. In section 8, I show, through simulation, that for phenotypes with heteroskedastic

environmental residuals, the novel method of calculating the simplifying parameter leads better false

positive rate control and a more powerful test.
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5.1 The Linear Mixed Model

The LMM models an observed phenotype, y, as,

y = 1µ+ Xβ + Gα+ a + e (5.1)

where 1 is a column vector of ones, X is the design matrix of covariates, G is the design matrix

describing the genetic locus to be tested, and µ, β, and α are unconstrained parameters that can be

referred to as the population mean, the effect(s) of the covariate(s), and the effect(s) of the genetic

factor(s) to be tested, respectively. a and e are so-called “random effects”, estimated in the process

of model fitting, but with constraints. Specifically, they are modeled hierarchically as

a ∼ N(0,Kτ2), (5.2)

e ∼ N(0,Dσ2) (5.3)

where K is a known, positive semi-definite genomic similarity matrix, and D is a known, diagonal

residual variance matrix. The scale parameters, τ2 and σ2, are constrained only to be non-negative.

To conduct a GWAS, the LMM is fit to each polymorphic genetic variant, using G to encode

the locus design matrix and testing whether α = 0. If α 6= 0, the locus is a QTL. Here, we use

the likelihood ratio test (LRT) to test how likely the observed difference between α̂ and 0 is, due to

chance alone.

In this context, the LRT requires “fitting” both a null and alternative version of the LMM, where

the term “fitting” is shorthand for calculating the maximum likelihood value of all parameters and

calculating the likelihood of the model at those parameter estimates. The relevant alternative model

is written in Equation 5.1 and the relevant null model is identical except it excludes the term Gα.

Henderson (1984) described a suite of procedures for fitting the LMM in a variety of situations,

but Henderson’s methods are of limited use in QTL mapping because they are computationally slow.

His focus was on estimation of breeding values (a in Equation 5.1), which is useful for livestock

improvement breeding programs, so the model only needed to be fit once, to one design matrix, and

speed was not a primary concern.
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5.2 Compact Specification of the LMM

The LMM as specified in Equation 5.1 is equivalent to:

y ∼ N(Xcβc,Vλ) (5.4)

where fixed effects design matrices are combined into Xc and the variance-covariance matrices of

the random effects are combined into Vλ. Specifically, the covariate matrices and their effect vectors

are compacted as

Xc = [1 X G] (5.5)

βc =
[
µ βTαT

]T
(5.6)

Going forward, only the compact notation is used, so Xc and βc will be referred to simply as X and

β. The covariance matrices is compacted by use the re-parametrization,

h2 =
τ2

τ2 + σ2
(5.7)

λ = τ2 + σ2 (5.8)

and “hiding” the h2 parameter inside the definition of V, which will be mathematically useful. After

defining

V = Kh2 + D(1− h2) (5.9)

we have

Kτ2 + Dσ2 =
(
Kh2 + D(1− h2)

)
λ (5.10)

= Vλ (5.11)

This parameterization’s usage of the narrow-sense heritability, h2, has two benefits. First, it is directly

interpretable to geneticists. And second, it is bounded to the range [0, 1], which can be useful in a

grid-based or gradient-based search for an optimal parameter value.
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5.3 Given h2, the LMM problem reduces to the GLS problem

Given it the value of h2, the LMM simplifies to the generalized least squares (GLS) model.

y ∼ N(Xβ,Vλ) (5.12)

The well-known ML estimates for β and λ are

β̂ = (XTV−1X)−1XTV−1y (5.13)

λ̂ =
∥∥∥(Xβ̂ − y)TV−1(Xβ̂ − y)

∥∥∥
2

(5.14)

which can calculated directly more rapidly than the LMM could be fit directly. However, due to

the fact that X changes with every new genetic locus and the requirement to invert (XTV−1X)

to solve this problem directly, this solution is still not optimal for GWAS application. The next

section describes a further simplification that will make the genome-wide fitting of the GLS (and, by

extension, the LMM) computationally tractable.

Note that the likelihood of Equation 5.12 is:

`(β, λ;y,X,V) = −n
2

log(2π)− 1

2
log |Vλ| − 1

2λ
(y −Xβ)TV−1(y −Xβ) (5.15)

= −n
2

log(2π)− 1

2
log |V| − n

2
log λ− 1

2λ
(y −Xβ)TV−1(y −Xβ) (5.16)

to which I will refer in the next section.

5.4 Given M, the GLS problem reduces to the OLS problem

Although the simplification of the LMM fitting process to the GLS procedure did not immediately

result in sufficient speed-up to make GWAS tractable, the GLS procedure proves is amenable to

further simplification. Take as given a matrix, M, that has the property

MTM = V−1 (5.17)
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where V is the covariance of y, as defined in Equation 5.9. I can use M to define a “rotated”

phenotype vector, yr = My, which has identity covariance, as can be verified by

Var(yr) = Var(My) (5.18)

= MVar(y)MT (5.19)

= MVMT (5.20)

= I (5.21)

where the last step can be verified by

MVMT = I (5.22)

MTMVMTM = MTM (5.23)

V−1VV−1 = V−1 (5.24)

V−1 = V−1 (5.25)

Because yr has identity covariance, it can be modeled with a simple linear model (SLM). In particular,

we choose to model it as:

yr ∼ N(Xrβr, Iλr) (5.26)

where Xr = MX is a “rotated” covariate matrix. This linear model can be solved by ordinary least

squares (OLS), which is computationally efficient and numerically stable when solved by the QR

decomposition. The well-known ML estimates of βr and λr are

β̂r = (XT
r Xr)

−1XT
r yr (5.27)

λ̂r =
∥∥∥(Xrβ̂r − yr)T(Xrβ̂r − yr)

∥∥∥
2

(5.28)

96



For completeness, it should be shown that β̂r = β̂, which can be verified by:

β̂r = (XT
r Xr)

−1XT
r yr (5.29)

= ((MX)T(MX))−1(MX)TMy (5.30)

= (XTMTMX))−1XTMTMy (5.31)

= (XTV−1X)−1XTV−1y (5.32)

= β̂ (5.33)

and that λ̂r = λ̂, which can be verified by:

λ̂r =
∥∥∥(Xrβ̂r − yr)T(Xrβ̂r − yr)

∥∥∥
2

(5.34)

=
∥∥∥(MXβ̂ −My)T(MXβ̂ −My)

∥∥∥
2

(5.35)

=
∥∥∥(Xβ̂ − y)TMTM(Xβ̂ − y)

∥∥∥
2

(5.36)

=
∥∥∥(Xβ̂ − y)TV−1(Xβ̂ − y)

∥∥∥
2

(5.37)

= λ̂ (5.38)

That β̂r = β̂ and λ̂r = λ̂ can also be verified from the log likelihoods. The OLS model described

in Equation 5.26 has log likelihood:

`(βr, λr; Xr,yr) = −n
2

log(2π)− 1

2
log |I| − n

2
log λr −

1

2λr
(yr −Xr)

T(yr −Xrβr) (5.39)

= −n
2

log(2π)− n

2
log λr −

1

2λr
(My −MXβr)

T(My −MXβr) (5.40)

= −n
2

log(2π)− n

2
log λr −

1

2λr
(y −Xβr)

TMTM(y −Xβr) (5.41)

= −n
2

log(2π)− n

2
log λr −

1

2λr
(y −Xβr)

TV−1(y −Xβr) (5.42)

which differs from that of the GLS problem (Equation 5.12) by a constant, 1
2 log |V|.

`(βr, λr; Xr,yr) = `(β, λ; X,y)− 1

2
log |V| (5.43)
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thus, for fixed h2 (and thus fixed V), these likelihoods reach their maxima at the same parameter

values.

The combination of these two simplifications makes possible a strategy to use the LMM to

conduct a GWAS. Specifically, by using Brent’s method to optimize over h2, and therefore using a

fixed h2 at each step, and using M to fit the model by OLS rather than GLS at each step, the LMM

can be rapidly fit to any X. But this procedure requires the ability to rapidly calculate M to calculate

the maximum likelihood parameter values and and log |M| to “back correct” the rotated likelihood

to the un-rotated frame, which we have thus far not addressed. In the following sections we address

these issues.

5.5 M for the Homoscedastic LMM

Kang et al. (2008) proposed the strategy for GWAS described above and proposed a value of

M that is computationally efficient and is valid when D = I. This advance was termed “EMMA”,

an acronym for efficient mixed-model analysis. Their approach used a slightly different, but mathe-

matically equivalent, parameterization of the variance components, but we convert it into the (h2, λ)

parameterization here for consistency with the rest of this chapter. The differences in parameterization

do not change the likelihood of the model and do not influence any results.

5.5.1 Kang’s M

Kang et al. (2008) proposed

Mhom =
(
h2ΛK + (1− h2)I

)− 1
2 UK

T (5.44)

where ΛK and UK are the eigenvalue matrix and eigenvector matrix of K, respectively. Importantly,

K is fixed for the entire genome scan, so it need only be eigen-decomposed once and its eigen vectors

and eigen values can be used to calculate useful locus-specific intermediates as described below.
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5.5.2 Validity

It can be verified that MT
homMhom = V−1. First, compute a useful form of V and V−1.

V = h2K + (1− h2)I definition (5.45)

= h2UKΛKUK
T + (1− h2)I eigen decomposition (5.46)

= h2UKΛKUK
T + (1− h2)UKUK

T

eigen vectors of real symmetric are orthonormal (5.47)

= UK

(
h2ΛK + (1− h2)I

)
UK

T distributive property (5.48)

This eigen-form can be inverted directly by inverting the eigen values, giving

V−1 = UK

(
h2ΛK + (1− h2)I

)−1
UK

T (5.49)

Now, we can verify the necessary equality

MTM =
((
h2ΛK + (1− h2)I

)− 1
2 UK

T
)T ((

h2ΛK + (1− h2)I
)− 1

2 UK
T
)

definition (5.50)

= UK

(
h2ΛK + (1− h2)I

)− 1
2
(
h2ΛK + (1− h2)I

)− 1
2 UK

T

transpose of product (5.51)

= UK

(
h2ΛK + (1− h2)I

)−1
UK

T product of roots (5.52)

= V−1 from above (5.53)

5.5.3 Calculation of log |V|

As described in Section 5.4, log |V| is necessary to calculate the likelihood of the original model

from the likelihood of the rotated model. In the case of Mhom it is straightforward to calculate. The

determinant of any matrix is equal to the product of its eigen values, so the log of the determinant

is the sum of its eigen values. We already have the eigen values of the V, using only the eigen
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decomposition of K, as indicated in

log |V| =
n∑
i=1

h2λKi+ (1− h2) (5.54)

5.6 M for the Heteroscedastic LMM

The above M (Mhom) is valid only when the micro-environmental covariance is identity. Note

that the second step of the validity proof for Mhom (Equation 5.46 to 5.47) requires re-expressing

that covariance matrix as UKUK
T. That equality not generally true — it is true only when that

covariance is identity. Said another way, generally D 6= UKUK
T. In the special case where D = I,

though, D = I = UKUK
T.

In the more general situation, where the phenotype associated with some genotypes is known

with more certainty than the phenotype associated with other genotypes and therefore D 6= I, it

would be preferable to use a covariance matrix for the residual variance that reflects this reality.

Here, I propose a multiplier matrix that yields the same speed up as Mhom, but remains valid for any

diagonal residual covariance matrix.

5.6.1 Proposal

I propose

Mhet = (h2ΛL + (1− h2)I)−
1
2 UL

TD−
1
2 (5.55)

where

L = D−
1
2 KD−

1
2 (5.56)

where ΛL and UL are the eigenvalue matrix and eigenvector matrix of L, respectively. Note

that L has the property that, like K, it is fixed for the entire genome scan, so it need only be

eigen-decomposed once, though its eigen vectors and eigen values can be used to calculate useful

locus-specific intermediates as described below.
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5.6.2 Validity

As before, to be a valid multiplier matrix, M must have the property:

MTM = V−1 (5.57)

To verify this equality, we begin by calculating a useful form of V and V−1.

Proof.

V = h2K + (1− h2)D definition (5.58)

= D
1
2 D−

1
2 (h2K + (1− h2)D) pre-multiply by D

1
2 D−

1
2 = I (5.59)

= D
1
2 D−

1
2 (h2K + (1− h2)D)D−

1
2 D

1
2 post-multiply by D−

1
2 D

1
2 = I (5.60)

= D
1
2 (h2D−

1
2 KD−

1
2 + (1− h2)D−

1
2 DD−

1
2 )D

1
2 distribute D−

1
2 in (5.61)

= D
1
2 (h2D−

1
2 KD−

1
2 + (1− h2)I)D

1
2 definition of root inverse (5.62)

= D
1
2 (h2L + (1− h2)I)D

1
2 define: L = D−

1
2 KD−

1
2 (5.63)

= D
1
2 (h2ULΛLUL

T + (1− h2)I)D
1
2 eigen decomposition of L (5.64)

= D
1
2 (h2ULΛLUL

T + (1− h2)ULUL
T)D

1
2 property of eigen vectors (5.65)

= D
1
2 UL(h2ΛL + (1− h2)I)UL

TD
1
2 distributive property (5.66)

Given that form of V, a useful form of V−1 is near.

V−1 =
(
D

1
2 UL(h2ΛL + (1− h2)I)UL

TD
1
2

)−1
definition (5.67)

= D−
1
2
(
UL(h2ΛL + (1− h2)I)UL

T
)−1

D−
1
2 inverse of product (5.68)

= D−
1
2 UL(h2ΛL + (1− h2)I)−1UL

TD−
1
2 inverse of eigen decomposition (5.69)
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It is straightforward to compare MTM with this form of V−1 to verify their equality.

MTM =
(

(h2ΛL + (1− h2)I)−
1
2 UL

TD−
1
2

)T (
(h2ΛL + (1− h2)I)−

1
2 UL

TD−
1
2

)
definition (5.70)

=
(
D−

1
2 UL(h2ΛL + (1− h2)I)−

1
2

)(
(h2ΛL + (1− h2)I)−

1
2 UL

TD−
1
2

)
transpose of product (note only UL is non-diagonal) (5.71)

= D−
1
2 UL

(
(h2ΛL + (1− h2)I)−

1
2 (h2ΛL + (1− h2)I)−

1
2

)
UL

TD−
1
2

associative property (5.72)

= D−
1
2 UL(h2ΛL + (1− h2)I)−1UL

TD−
1
2 definition of root inverse (5.73)

= V−1 from Equation 5.69 (5.74)

5.6.3 Calculation of log |V|

As with Mhom, the calculation of log |V| comes almost for free after calculating Mhet.

V = D
1
2
(
h2L + (1− h2)I

)
D

1
2 (5.75)

log |V| = log
(∣∣∣D 1

2
(
h2L + (1− h2)I

)
D

1
2

∣∣∣) (5.76)

= log
(∣∣∣D 1

2

∣∣∣ ∣∣(h2L + (1− h2)I
)∣∣ ∣∣∣D 1

2

∣∣∣) (5.77)

= log
(
|D|

∣∣(h2L + (1− h2)I
)∣∣) (5.78)

= log (|D|) + log
(∣∣(h2L + (1− h2)I

)∣∣) (5.79)

At this point, the problem is reduced to two terms. The first is log of the determinant of a

diagonal matrix, which is simply the sum of its elements. The second is the log of the determinant of

a covariance matrix expressed in the same form as was present in the homoskedastic setting, simply

with L in place of K and can be solved in the same way. Specifically,

log (|D|) =
n∑
i=1

di (5.80)
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and

log
(∣∣(h2L + (1− h2)I

)∣∣) =
n∑
i=1

h2λLi+ (1− h2) (5.81)

5.7 Simulation Studies

Having laid the mathematical groundwork to rapidly fit the LMM with heteroskedastic envi-

ronmental residuals, it is important to test the properties of this testing procedure as compared to

the existing procedure. It is to be expected that, when the residuals truly are heteroskedastic and

their variances are known by oracle, the heteroskedastic LMM should outperform the homoskedastic

LMM in two ways.

First, I have observed that, when the homoskedastic LMM is applied to data with heteroskedastic

residuals, the false positive rate (FPR) is covertly inflated. Said another way, while the probability

of observing a nominal p value less than c under the null should be c, I have observed that with the

homoskedastic LMM, in this scenario it is greater than c. Anti-conservative statistical behavior of

this type can lead to false positive results and is deeply problematic.

Second, by bringing the model into closer accord with the data generating process, more powerful

tests should be possible. That is to say, in situations where the residuals are heteroskedastic, and the

locus truly does influence the phenotype, the heteroskedastic LMM is expected to be more likely to

be able to reject the null hypothesis than the homoskedastic LMM.

5.7.1 Simulation Setup

I ran 10,000 null simulations, where no SNP directly influences the phenotype and 10,000

alternative simulations, where one genetic factor directly influence the phenotype. I will first describe

the null simulations, with parameters that varied across simulations enclosed in curly brackets.

Each simulation consisted of a population of size {50, 100, 200}. Genomes were simulated by

forward simulation, starting with one haploid individual with 100 binary genetic factors. At each

time t a randomly chosen individual from the population asexually produced four offspring that were

identical to the parent except for a random 15% of the genome was mutated. This process continued

until the desired population size was reached.
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For each simulation, a phenotype was simulated to have narrow-sense heritability of {0.1, 0.3,

0.5, 0.7, 0.9}. The genetic contribution was simulated from a multivariate normal with covariance

equal to the Manhattan distance between genomes. For homoskedastic simulations, the environmental

contribution was simulated from a multivariate normal with identity covariance. For heteroskedastic

simulations, the covariance was a diagonal matrix, where one fifth of the values were each of (0.25,

0.5, 1, 2, 4).

A genome scan was conducted on each simulated set of genomes and phenotypes using the linear

model (LM), the gold-standard implementation of EMMA (Kang et al., 2008), which uses Mhom, my

implementation of the EMMA algorithm, also using Mhom (ISAM), and my implementation, using

Mhet (wISAM).

The alternative simulations were identical to the null simulations except for the fact that individ-

uals who have a 1 at the first genetic factor have 0.25 added to their phenotype value.

5.7.2 False positive rate (FPR) Control

I evaluated the FPR control of each test with quantile-quantile (QQ) plots that plot the sorted p

values against the quantiles of the uniform distribution. The ideal behavior of all tests under the null

would result in a straight line, starting at the origin and having slope of 1. For an anti-conservative

test, the realized p values are “too low”, and therefore the line on the QQ plot will be underneath the

ideal line. For a conservative test, the realized p values are “too high”, and therefore the line on the

QQ plot will be underneath the ideal line.

For example, the simulation with 100 organisms and h2 = 0.5 showed that all four tests are anti-

conservative and that the weighted ISAM, the only method to use Mhet is the least anti-conservative

(Figure 5.1). The QQ plot shown in Figure 5.1 is zoomed to the range [0, 0.01] in both the theoretical

(horizontal) and realized (vertical) axis. I show the rest of the QQ plots with increasing zoom from

the range [0, 1] to the range [0, 0.001] to show both the global behavior and the behavior in the

zone that really matters for large scale analysis, the very small p values. Given the large number of

hypotheses that are tested in a GWAS and the multiple hypothesis testing corrections that must be

made to account for the large number of hypotheses, the most relevant p-value cutoffs to evaluate are

the very small ones.
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Null QQ plot for GWAS with
100 strains and h2 = 0.5

theoretical

observed

0.000 0.002 0.004 0.006 0.008 0.010

0.000

0.002

0.004

0.006

0.008

0.010
LM
EMMA
ISAM
wISAM

Figure 5.1: This quantile-quantile (QQ) plot of the p values from all four tests shows that they
all are anti-conservative and that the weighted ISAM, the only method to use Mhet is the least
anti-conservative.

Figure 5.2, Figure 5.3, and Figure 5.4 show the behavior of all four tests across all simulation

scenarios. Some consistent patterns emerge.

First, the higher the heritability and the larger the strain panel, the more anti-conservative is the

LM. In the most extreme case (Figure 5.4, row 4, column 5), the observed p-values rise less than

a hundredth of distance they are expected to over the interval [0, 0.001]. Practically speaking, this

observation implies that there is one p value less than 0.001 out of every 10 tests, though should only

be one out of every 1,000 tests. This pattern is present to varying degrees in traits with h2 ∈ 0.7, 0.9

for all panel sizes.

Second, there is never any meaningful difference between EMMA and my unweighted ISAM

implementation. This is consistent with a correct implementation, as these tests are theoretically

identical.

Third, the EMMA and ISAM tests are overly-conservative when applied to traits with low

heritability, especially when few strains are used. The most extreme observation of this behavior can

be seen in Figure 5.2, row 4, column 1. The observed p values reach the top of the plot about half

way across, indicating that there is one p value less than 0.001 every approximately every 20,000

tests, though there should be one every 10,000 tests. This pattern is present to varying degrees for

traits with h2 ∈ 0.1, 0.3 in a panel with 50 or 100 strains and for a trait with h2 = 0.1 in a panel of

200 organisms.
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Finally, the EMMA and ISAM tests are anti-conservative when applied to traits with high

heritability when few strains are used. In the most extreme case (Figure 5.2, row 4, column 5), the

observed p-values rise about half the distance they are expected to over the interval [0, 0.001]. This

pattern indicates that there are two p-values less than 0.001 out of every 1,000 tests, while there

should be only one. Said another way, there is one p-value less than 0.001 for every 5,00 tests, while

there should be one every 1,000 tests. The weighted ISAM, the only test that uses Mhet rather than

Mhom rises to about three quarters of its expected height, indicating that there are about 1.5 p-values

less than 0.001 out of every 1,000 tests, while there should be only one. This behavior is still not

ideal, as there should be only 1 p-value less than 0.001 out of every 1,000 tests, but it is closer to

ideal than the EMMA and ISAM tests, which use Mhom.

5.7.3 Discrimination between real and spurious signals

Another important way to evaluate the behavior of the tests to compare their ability to discrimi-

nate real from spurious signals. Where FPR control under the null used only null simulations, this

evaluation combines information from null and alternative simulations. To compare the discrimina-

tion of weighted and unweighted LMM-based tests, I compared their receiver operating characteristic

(ROC) curves.

This method of evaluation involves collecting test statistics from both null and alternative data

and calculating, for each possible cutoff, the true positive rate and the false positive rate. For a cutoff,

c, the true positive rate is the fraction of alternative that have a test statistic greater than the cutoff.

Similarly, the false positive rate is the fraction of null simulations that have a test statistic greater

than the cutoff.

Two points are guaranteed to be in every ROC plot. If inf is used as the cutoff, no tests will be

called positive, so both the true positive rate and the false positive rate will be 0 and thus (0, 0) is

on every ROC curve. If − inf is used as the cutoff all tests will be called positive, so both the true

positive rate and the false positive rate will be 1 and thus (1, 1) is on every ROC curve. For a test

with no ability to discriminate between null and alternative simulations, the ROC curve progresses

from (0, 0) to (1, 1) along a straight line with slope 1. For a test that perfectly discriminates between

null and alternative simulations, the ROC curve progresses directly up from (0, 0) to (0, 1) and then

directly to the right to (1, 1). Most tests have intermediate discrimination ability, between random
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Figure 5.5: Receiver operating characteristics (ROC) curve for a GWAS with 100 organisms on a trait
with h2 = 0.05. The ROC curve for the weighted ISAM is superior to that of the other LMM-based
methods and the LM.

guessing and perfect, so their ROC curve progresses through the upper left portion of the plot. The

closer the ROC curve is to that of a perfect test, the better the test.

ROC analysis exploring the entire parameter space describe for the FPR control under the null

has not yet been completed. Here, I show the ROC curve that resulted for a study with h2 = 0.5 and

100 organisms, the middle-of-the-road parameter set Figure 5.5.

5.8 Software

I implemented a linear mixed model fitter that can handle heteroskedastic residual variance

using the method described in this chapter in R package wISAM. This package is tailored to conduct

GWAS using the heteroskedastic LMM. It is freely available on github at https://github.com/

rcorty/wISAM and on CRAN at https://CRAN.R-project.org/package=wISAM.
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CHAPTER 6

Conclusion and Future Directions

6.1 Summary

In section 1.5, I explored the potential of the double generalized linear model (DGLM) to detect

novel QTL in linkage disequilibrium (LD) mapping experiments. I described how the DGLM, unlike

the standard linear model (SLM), can detect mean QTL, variance QTL, and joint mean-variance

QTL. This work was based on long-public, but little used statistical methods (Smyth, 1989) applied

to genetics experiments in a way that is relatively novel (Paré et al., 2010; Rönnegård and Valdar,

2011). I extended previous work by developing a permutation approach that accurately controls

the false positive rate (FPR) of an individual test to the desired level and can be applied naturally

in a genome-wide context to accurately control the family-wise error rate (FWER). Additionally, I

developed novel plots for visualizing and interpreting the results of a genome scan based on these

tests and have distributed software that implements this framework in R package vqtl, which is

available on CRAN and is interoperable with the popular R/qtl.

I retrieved data from the Mouse Phenome Database to test my framework for QTL mapping

with the DGLM and found three novel QTL. In reanalyzing the data from Bailey et al. (2008),

I discovered a novel vQTL for rearing behavior, which was not detected previously because the

standard analysis framework does not detect vQTL. In reanalyzing the data from Kumar et al. (2013),

I discovered a novel mQTL for circadian behavior. The additional power of the DGLM-based test

to detect this QTL came from accommodating the variance heterogeneity across alleles at the QTL.

In reanalyzing the data from Leamy et al. (2000), I discovered a novel mQTL for bodyweight at

three weeks of age. The additional power of the DGLM-based test to detect this QTL came from

accommodating the variance heterogeneity across levels of a nuisance covariate — which father sired

the mouse on which the bodyweight was measured. Gaining power to detect a QTL in this manner

was novel and therefore I investigate the statistical power of DGLM-based tests in cases of what
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I’ve termed “background variance heterogeneity”. Simulations confirmed that when the source of

variance heterogeneity is known, the DGLM-based tests for mQTL, vQTL, and mvQTL are uniquely

powerful while maintaining accurate FPR control.

In Figure 4.9, I described the utility of the linear mixed model (LMM) for genetic mapping in

non-exchangeable populations. In such populations, both the SLM and the DGLM are inappropriate

because they cannot account for the differential relatedness of individuals in the mapping population.

I described the established procedure for fitting the LMM that is fast enough to make genome-wide

analysis tractable, and noted that one of its limitations is its requirement that the environmental

variance be identical across all measurements. I went on to report a novel mathematical method for

rapidly fitting the LMM that allows for heteroskedastic residual variance, removing a limitation of

the previous standard method. I tested this method on simulated data and found it to have beneficial

effects on FPR control and power to detect mQTL. I have developed an R package that implements

GWAS analysis using this method and it is available on CRAN. The next step on this project is clear

— to apply the software to existing datasets to attempt to characterize the extent to which it changes

the results of completed GWAS analyses and to potentially detect new QTL.

6.2 Outstanding Specific Aims

This dissertation to this point describes the results of aims 1a, 1b, and 2a. Briefly, aim 1a

was to accommodate variance heterogeneity in an LD mapping panel. This aim was accomplished

and its results were reported in the second reanalysis in chapter 3 and chapter 2. Aim 1b was to

accommodate variance heterogeneity in an association mapping panel, and the results of that work

are reported in chapter 5. Aim 2a was to identify variance heterogeneity in an LD mapping panel,

which was reported in the first reanalysis in chapter 3. Here, I will discuss aims 2b and 3.

Aim 2b was to develop a statistical approach to detect vQTL in an inbred strain panel. I began

addressing this aim with a two-stage approach. The first step was to use a Bayesian statistical

modeling language like JAGS or STAN (Plummer, 2003; Carpenter et al., 2017) to estimate the mean

and variance of each strain. The second intended step was to use a standard GWAS approach to

detect genetic associations with those strain parameters. Though I did not make meaningful progress

on this work to date, I consider it a promising avenue of future research.
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Aim 3 was to develop principled methods for combining evidence from LD mapping and

association mapping panels. With the benefit of three more years of study, I understand better the

challenges that this aim faces. Foremost among them is the question of how to reconcile the fact

that a given genetic variant is likely to have drastically different effects depending on the genetic

background in which it is expressed with the stated goal to share information across study designs.

Based on this challenge, I consider this aim to be a less-promising avenue for future research.

6.3 Human Studies

In the last two years, I worked on an exciting project to apply DGLM-based genetic mapping

approaches to cardiovascular disease risk traits in humans. I worked with Ethan and Leslie Lange

and Laura Raffield, a postdoctoral researcher in their lab, to attempt to identify genetic loci that

influence lipid levels and blood pressure traits. This work did not achieve any meaningful results yet,

but I believe it has tremendous potential to identify GxG and GxE interactions through the detection

of vQTL.

The problem of differential relatedness was managed by including the first ten principle com-

ponents of the genome as covariates in both the mean and variance sub-models. This is a heuristic

correction, and is less mathematically-sound than the application the linear mixed model described

in chapter 5. Given the extremely large sample size involved in human GWAS studies, it is likely

that even the efficient implementation of the LMM described here and elsewhere (Kang et al., 2008)

will not be tenable for the near future. When I turned my focus away from this project and toward

those that I completed, we were dealing with issues related to correction for p-value inflation with

genomic control and how that might be different in the mean sub-model as compared to the variance

sub-model.
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A. W., Nieminen, M. S., O’Donnell, C. J., Ohlsson, C., Oostra, B., Palmer, L. J., Raitakari,
O., Ridker, P. M., Rioux, J. D., Rissanen, A., Rivolta, C., Schunkert, H., Shuldiner, A. R.,
Siscovick, D. S., Stumvoll, M., Tönjes, A., Tuomilehto, J., Van Ommen, G. J., Viikari, J.,
Heath, A. C., Martin, N. G., Montgomery, G. W., Province, M. A., Kayser, M., Arnold, A. M.,
D.Atwood, L., Boerwinkle, E., Chanock, S. J., Deloukas, P., Gieger, C., Grönberg, H., Hall,
P., Hattersley, A. T., Hengstenberg, C., Hoffman, W., Lathrop, G. M., Salomaa, V., Schreiber,
S., Uda, M., Waterworth, D., Wright, A. F., Assimes, T. L., Barroso, I., Hofman, A., Mohlke,
K. L., Boomsma, D. I., Caulfield, M. J., Cupples, L. A., Erdmann, J., Fox, C. S., Gudnason,
V., Gyllensten, U., Harris, T. B., Hayes, R. B., Jarvelin, M. R., Mooser, V., Munroe, P. B.,
Ouwehand, W. H., Penninx, B. W., Pramstaller, P. P., Quertermous, T., Rudan, I., Samani, N. J.,
Spector, T. D., Völzke, H., Watkins, H., Wilson, J. F., Groop, L. C., Haritunians, T., Hu, F. B.,
Kaplan, R. C., Metspalu, A., North, K. E., Schlessinger, D., Wareham, N. J., Hunter, D. J.,
O’Connell, J. R., Strachan, D. P., Wichmann, H. E., Borecki, I. B., Van Duijn, C. M., Schadt,
E. E., Thorsteinsdottir, U., Peltonen, L., Uitterlinden, A. G., Visscher, P. M., Chatterjee, N.,
Loos, R. J., Boehnke, M., McCarthy, M. I., Ingelsson, E., Lindgren, C. M., Abecasis, G. R.,

114



Stefansson, K., Frayling, T. M., and Hirschhorn, J. N. (2010). Hundreds of variants clustered in
genomic loci and biological pathways affect human height. Nature, 467(7317):832–838.

Allen Institute for Brain Science (2015). Allen Mouse Brain Atlas. Allen Mouse Brain Atlas,
2(November).

Aschard, H., Zaitlen, N., Tamimi, R. M., Lindström, S., and Kraft, P. (2013). A Nonparametric
Test to Detect Quantitative Trait Loci Where the Phenotypic Distribution Differs by Genotypes.
Genet. Epidemiol., 37(4):323–333.

Ataman, S. L., Cooper, R., Rotimi, C., McGee, D., Osotimehin, B., Kadiri, S., Kingue, S., Muna, W.,
Fraser, H., Forrester, T., and Wilks, R. (1996). Standardization of blood pressure measurement
in an international comparative study. J. Clin. Epidemiol., 49(8):869–77.

Ayroles, J. F., Buchanan, S. M., O’Leary, C., Skutt-Kakaria, K., Grenier, J. K., Clark, A. G., Hartl,
D. L., de Bivort, B. L., and Kusters, J. (2015). Behavioral idiosyncrasy reveals genetic control
of phenotypic variability. Proc. Natl. Acad. Sci., 1(21).

Bailey, J. S., Grabowski-Boase, L., Steffy, B. M., Wiltshire, T., Churchill, G. A., and Tarantino, L. M.
(2008). Identification of quantitative trait loci for locomotor activation and anxiety using closely
related inbred strains. Genes. Brain. Behav., 7(7):761–9.

Bandillo, N., Raghavan, C., Muyco, P. A., Sevilla, M. A. L., Lobina, I. T., Dilla-Ermita, C. J., Tung,
C. W., McCouch, S., Thomson, M., Mauleon, R., Singh, R. K., Gregorio, G., Redoña, E., and
Leung, H. (2013). Multi-parent advanced generation inter-cross (MAGIC) populations in rice:
Progress and potential for genetics research and breeding. Rice, 6(1):1–15.

Banks, G., Heise, I., Starbuck, B., Osborne, T., Wisby, L., Potter, P., Jackson, I. J., Foster, R. G.,
Peirson, S. N., and Nolan, P. M. (2015). Genetic background influences age-related decline
in visual and nonvisual retinal responses, circadian rhythms, and sleep. Neurobiol. Aging,
36(1):380–393.

Beasley, T. M., Erickson, S., Public, R., Building, H., and Allison, D. B. (2009). Rank-Based
Inverse Normal Transformations are Increasingly Used, but are they Merited? Behav. Genet.,
39(5):580–595.

Bogue, M. a., Churchill, G. a., and Chesler, E. J. (2015). Collaborative Cross and Diversity Outbred
data resources in the Mouse Phenome Database. Mamm. Genome, 1(Cc).

Broman, K. W. (2010). A Guide to QTL Mapping with R, volume 32.
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Rönnegård, L. and Valdar, W. (2011). Detecting major genetic loci controlling phenotypic variability
in experimental crosses. Genetics, 188(2):435–447.
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Pietiläinen, K. H., Platou, C. P., Polasek, O., Pouta, A., Rafelt, S., Raitakari, O., Rayner, N.,
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W., Afzal, U., Arnlöv, J., Arscott, G. M., Bandinelli, S., Barrett, A., Bellis, C., Bennett, A. J.,
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