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ABSTRACT We present vqtl, an R package for mean-variance QTL mapping. This QTL mapping approach
tests for genetic loci that influence the mean of the phenotype, termed mean QTL, the variance of the
phenotype, termed variance QTL, or some combination of the two, termed mean-variance QTL. It is unique
in its ability to correct for variance heterogeneity arising not only from the QTL itself but also from nuisance
factors, such as sex, batch, or housing. This package provides functions to conduct genome scans, run
permutations to assess the statistical significance, and make informative plots to communicate results.
Because it is inter-operable with the popular qtl package and uses many of the same data structures and
input patterns, it will be straightforward for geneticists to analyze future experiments with vqtl as well as
re-analyze past experiments, possibly discovering new QTL.
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Traditional quantitative trait locus (QTL) analyses have focused on
discovering “mean QTL” (mQTL), regions of the genome where allelic
variation drives heterogeneity of phenotype mean, while assuming that
the residual variance, that is, the intrinsic stability or noisiness of the
phenotype, is identical for every individual in the mapping population.
It has long been recognized, however, that the residual variance is itself
heritable (Falconer 1965; Lynch and Walsh 1998), a phenomenon that
has been described theoretically (Hill and Zhang 2004; Hill and Mulder
2010), demonstrated in inbred model organisms (Sorensen et al. 2015)
and crops (Yang et al. 2012), and exploited in livestock improvement
efforts (Mulder et al. 2008; Ibáñez-Escriche et al. 2008). Correspond-
ingly, several groups have proposed statistical methods for mapping
QTL controlling the extent of this residual variance, these sometimes
termed “varianceQTL” (vQTL) (Paré et al. 2010; Rönnegård andValdar
2011, 2012; Cao et al. 2014; Soave and Sun 2017;Dumitrascu et al. 2018).
Nonetheless, although detection of vQTL has started to enter the main-
stream of genetic analysis (Yang et al. 2012; Hulse and Cai 2013; Ayroles
et al. 2015; Forsberg et al. 2015; Wei et al. 2016; Wang and Payseur
2017; Wei et al. 2017), statistical tools for this purpose remain
heterogeneous.

We have developed a standardized method for QTL mapping in
experimental crosses, in particular F2 intercrosses and backcrosses, that
simultaneously models mean and variance effects in order to detect
mQTL, vQTL and a generalization of the two that we term “mvQTL”.
Our approach, which we term “mean-variance QTLmapping”, is based
on a double generalized linear model (DGLM) (Smyth 1989), following
the proposed use in this context by Rönnegård and Valdar (2011). In
the first of two companion articles, we characterize the method and
competitors in the setting where variance heterogeneity is driven by a
background factor, such as sex, batch or housing, and show that mod-
eling these (external) variance effects improves power to detect mQTL,
vQTL and mvQTL (Corty and Valdar 2018). In the second companion
paper, we demonstrate the approach on two existing datasets and dis-
cover new mQTL and vQTL (Corty et al. 2018).

Here, we provide a practical guide to the approach using its asso-
ciated R package vqtl, which is currently suitable for F2 intercrosses
and backcrosses, and is inter-operable with the well-established mean
QTL-oriented package for this purpose, r/qtl (Broman et al. 2003). First,
to generate illustrative data, we simulate an F2 intercross and four
phenotypes: one phenotype determined entirely by random noise,
and one with each of the three kinds of QTL. On each phenotype we
then conduct a genome scan using standard approximations to interval
mapping (Lander and Botstein 1989; Haley and Knott 1992; Martínez
and Curnow 1992), and mean-variance QTL mapping, which includes
a test formQTL, a test for vQTL, and a test for mvQTL. The association
statistics of all four tests are initially plotted in LOD score units, with
drawbacks of this plotting unit discussed; then permutation scans are
used to determine empirically-adjusted p-values, and plotting in these
units is shown to to make the results of the four tests more easily
comparable. Plots are then described that communicate effects that
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led to the QTL’s detection, and the bootstrap is used to estimate its
confidence interval. Last, we benchmark performance, using one of
the datasets examined in Corty et al. (2018) to report how computation
time varies with marker density and number of permutations.

EXAMPLE DATA: SIMULATED F2 INTERCROSS
To illustrate the use of the vqtl package,wefirst simulated an example F2
intercross using the R package qtl (Broman et al. 2003), on which vqtl is
based. This cross consisted of 200 male and 200 female F2 offspring,
with 3 chromosomes of length 100 cM, each tagged by 11 equally-
spaced markers and estimated genotype probabilities at 2cM intervals
with qtl’s hidden Markov model. We then generated four phenotypes:

1. phenotype1 consists only of random noise and will serve as an
example of negative results for all tests.

2. phenotype2 has an mQTL that explains 4% of phenotype variance
at the center of chromosome one.

3. phenotype3 has a vQTL at the center of chromosome two.
This vQTL acts additively on the log standard deviation scale,

and results in residual standard deviation of [0.8, 1, 1.25] for
the three genotype groups.

4. phenotype4 has an mvQTL at the center of chromosome three.
This mvQTL has a mean effect that explains 2.7% of phenotype
variance and a variance effect that acts additively on the standard
deviation scale, resulting in residual standard deviation of [0.85, 1,
1.17] for the three genotype groups.

Weadditionally consider phenotype1x throughphenotype4x,which
have the same typeof genetic effects asphenotype1 throughphenotype4,
but have the additional feature that females have greater residual
variance than males. All the same analyses and plots that are shown for
phenotype1 through phenotype4 are shown for phenotype1x through
phenotype4x in the appendix.

SCAN THE GENOME
The central function for genetic mapping in package qtl is scanone
(Broman et al. 2003). Analogously, the central function formean-variance
QTL mapping in package vqtl is scanonevar building on an early
version of scanonevar in package r/qtl. It takes three required inputs:

1. cross is an object that contains the genetic and phenotypic in-
formation from an experimental cross, as defined in package r/qtl.

2. mean.formula is a two-sided formula, specifying the phenotype
to be mapped, the covariates to be corrected for, and the QTL terms
to be fitted, with keywordsmean.QTL.add and mean.QTL.dom

3. var.formula is a one-sided formula, specifying the variance
covariates to be corrected for as well as the QTL terms to be fitted,
using keywords var.QTL.add and var.QTL.dom.

For example, to scan a phenotype named p1 we run:
scanonevar(
cross = test_cross,
mean.formula = p1 � sex + mean.QTL.add +

mean.QTL.dom,
var.formula = � sex + var.QTL.add + var.QTL.dom
)

At each locus in turn, this function tests for the presence of anmQTL, a
vQTL, and anmvQTL. The basis of these tests is a comparison between
the fit of an alternative model of the form

mean ¼ covariate effectsþ locus effects

logðvarianceÞ ¼ covariate effectsþ locus effects

with a null model that omits specific terms: for themQTL test, the null
model omits locus effects on phenotype mean; for the vQTL test, the
null omits the locus effects on phenotype variance; and for themvQTL
test, the null omits locus effects on bothmean and variance. (Note that
the mQTL test in mean-variance QTL mapping is different from the
traditional test: the traditional test does not have variance predictors of
any kind in either null or alternative models.)

LOD scores and nominal p-values
Each type of test (mQTL, vQTL, and mvQTL) yields two association
statistics: the LOD score, and the (nominal) p-value. The LOD is a raw
measure of association equal to the base 10 logarithm of the likelihood
ratio (LR) between the fitted alternative and null models. Higher values
indicate greater association when considered across loci for the same
type of test; but LOD scores between different types of tests, namely
between mvQTL test vs. either mQTL or vQTL tests, are not readily
comparable. The p-value, which is comparable between different types
of tests, transforms the LOD score to take account of the number of
parameters being fit: it is calculated from the asymptotic distribution of
2  logeðLRÞ under the null model, namely the x2 distribution with
degrees of freedom equal to the difference in the number of parameters
between the alternative and null models.

The p-values described above, however, are nominal: they do not
take into account multiple testing across the genome. They also rely on
asymptotic theory that assumes the underlying phenotype being re-
sidually normal; this may not always be the case and when violated
will lead to inflated significance. More robust p-values that are cor-
rected for genomewide significance via control of the family-wise error
rate (FWER) can be obtained empirically, through a permutation pro-
cedure described below.

Robust, genomewide-adjusted p-values
To calculate the empirical, FWER-controlled p-value of each test at each
locus we advocate use of a permutation procedure (Corty and Valdar
2018). Like previous work on permutation-based thresholds for genetic
mapping (Churchill and Doerge 1994; Carlborg and Andersson 2002),
this procedure sidesteps the need to explicitly estimate the effective
number of tests.

In brief, this approach involves conducting many genomes scans on
pseudo-nulldatagenerated throughpermutation tomaintainasmuchof
the character of the data as possible, while breaking the tested pheno-
type-genotype association. Specifically, the design matrix of the QTL
is permuted in the mean portion of the mQTL alternative model, the
variance portion of the vQTL alternativemodel, and in both portions of
the mvQTL alternative model.

For each test (mQTL, vQTL, and mvQTL), the highest observed test
statistic is extracted from each permutation scan and the collection of
statistics that results isusedtofitageneralizedextremevalue(GEV)density
(Stephenson 2002; Dudbridge and Koeleman 2004; Valdar et al. 2006).
The observed LOD scores from the genome scan are then transformed
by the cumulative distribution function of the extreme value density to
estimate the FWER-controlling p-values. This approach is implemented
in the function, scanonevar.perm, which requires two inputs:

1. sov is the scanonevar object, the statistical significance of
which will be assessed through permutation.

2. n.perms is the number of permutations to conduct.

The object returned by scanonevar.perm is a scanonevar
object with two additional pieces of information: an empirical p-value
for each test at each locus and the per-permutation maxima that were
used to calculate those p-values. These FWER-corrected p-values are
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straightforwardly interpretable: p ¼ 0:05 for a specific test at a specific
locus implies that in 5% of similar experiments where there is no true
genotype-phenotype association, we would expect to observe some
locus with this much or more evidence of association in this test.

Accurate estimation of the FWER-controlled p-values requires
many permutation scans: traditionally recommended is 1,000 (e.g.,
Churchill and Doerge 1994; Carlborg and Andersson 2002), although
the efficiency gain of using the GEV rather than raw quantiles means
that fewer may be adequate in practice (Valdar et al. 2006). These
permutation scans can be run on multiple processors by specifying
the optional n.cores argument, which defaults to the total number
of cores on the computer minus 2. On an Intel Core i5, running
100 permutations on this dataset takes about five minutes.Whenmany

phenotypes are studied, or if faster runtimes are needed, these per-
mutation scans can be broken into groups with different values for
random.seed, run on separate computers, and combined with the
c function. This function combines the permutations from all the
inputted scans, re-estimates the extreme value density, re-evaluates
the observed LOD scores in the context of new extreme value density,
and returns a new scanonevar object with more precisely estimated
empirical p-values.

Reporting and plotting genome scans
The results of scanonevar can be plotted by calling plot on
the scanonevar output object. This produces a publication-quality
figure that shows the association of the phenotype for each location

Figure 1 For each of the four simulated phenotypes, the genome scan shows the LOD score of each test —mQTL, vQTL, and mvQTL — in blue,
red, and black, respectively. The traditional test is in green and globally similar to the mQTL test.
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in the genome as different colors for type of test, with y-axis scale being
specified by the user, via option plotting.units as the LOD
(Figure 1), nominal p-value, or, provided permutations have been
run, empirical, FWER-controlling p-value (Figure 2). Of the available
y-axis scales, we recommend using the FWER-controlled p-values since
this scale puts all tests on a level-footing (unlike the LOD), and allows
direct identification of genomewide significance and thereby relevance
(unlike the nominal p-value).

Calling summary on the output of scanonevar produces a
summary of how the scan was conducted and what the results
were.

COMMUNICATE SIGNIFICANT FINDINGS
Having identified interesting QTL, we want to visualize the their
estimated genetic and covariate effects. Because the vqtl package
models effects for both mean and variance, existing plotting utilities
are not able to display the entirety of the modeling results. To under-
stand and communicate the results of a vqtl scan at one particular
locus, we developed the mean_var_plot. This plot illustrates how
the mean sub-model and variance sub-model of the DGLM fit the data
at a given locus.

In each mean_var_plot in Figure 3, the location of the dot
shows the estimated mean and standard deviation of each genotype

Figure 2 For each of the four simulated phenotypes, the genome scan shows the -log10 of the FWER-corrected p-value for each test — mQTL,
vQTL, and mvQTL — in blue, red, and black, respectively. The traditional test is in green and globally similar to the mQTL test. A value
of 2 implies that the quantity of evidence against the null is such that we expect to see this much or more evidence once per 100 phenotypes
with no true QTL.
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group, with the mean indicated by the horizontal position and the
standard deviation indicated by the vertical position. The horizontal
lines extending to the left and right from each dot show the standard
error of the mean estimate, and the vertical lines extending up and
down from each dot show the standard error of the standard deviation
estimate. There are two types of grouping factors considered by the
function mean_var_plot_model_based: (1) focal.groups
are groups that are modeled and the prediction for each group is
plotted. For example, a genetic marker is the focal.group in each
plot in Figure 3; D1M1 in the top left, D1M6 in the top right, D2M6 in
the bottom left, and D3M6 in the bottom right. (2) nuisance.
groups are groups that are modeled, but then averaged over before
plotting. When there are many grouping factors thought to play a role

in determining the mean and variance of an individual’s phenotype,
such as sex, treatment, and batch, we recommend putting just one or
two in focal.groups and the others in nuisance.groups for clarity,
cycling through which are displayed to gain a thorough understanding
of the factors that influence the phenotype.

Additional plotting utilities,phenotype_plot,effects_plot
mean_var_plot_model_free are described in the online
documentation, available on CRAN.

ESTABLISH A CONFIDENCE INTERVAL FOR THE QTL
Last, to assess the genetic precision of a discovered QTL for bioinfor-
matic follow-up, the function scanonevar.boot estimates confi-
dence intervals via the non-parametric bootstrap (Visscher et al. 1996).

Figure 3 mean_var_plot’s show the
estimated genotype effects at a locus
with mean effects on the horizontal axis
and variance effects on the vertical axis.
Horizontal lines indicate standard errors
for mean effects and vertical lines in-
dicate standard errors for variance ef-
fects. For phenotype1, the pattern of
overlapping estimates and standard
errors is consistent with the fact that
there are no genetic effects, and the
p-value was not statistically significant
at any locus. For phenotype2, the
pattern of horizontal, but not verti-
cal, separation visually illustrates the
identified mQTL. For phenotype3,
the pattern of vertical, but not horizon-
tal, separation visually illustrates the
identified vQTL. For phenotype4, the
pattern of two-dimensional separation
illustrates an mvQTL.

Figure 4 Time taken to run scanonevar.perm on
the data from Kumar et al. (2013) which contains
244 individuals and 582 loci, varying the number of
permutations desired and the number of computer
cores used. For a given number of cores, there is a
linear relationship between number of permutations
conducted and time required. The slope the the line
indicates time required per permutation and is depen-
dent on the number of cores, ranging from � 6.3 sec
per permutation with 4 cores to � 1.2 sec per permu-
tation with 32 cores.
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This function takes, as arguments, a scanonevar object, the type of
QTL detected, the name of the chromosome containing the QTL, and
num.resamples, the number of bootstrap resamplings desired. As
with scanonevar.perm, the n.cores argument can be used to
spread the bootstraps over many computational cores and defaults to
the number of cores available minus two, and bootstraps can be run on
separate computers and combined with c to increase the precision of
the estimate of the confidence interval.

We recommend 1000 resamples to establish 80% and 90% confi-
dence intervals.With the datasets simulated here, it takes 20min to run
1000 bootstrap resamples on an Intel core i5.

PERFORMANCE BENCHMARKS
By far, the most computationally-intensive step in the mean-variance
QTL mapping process is the assessment of genome-wide statistical
significance by permutation. The original genome scan is much faster,
because it involves only a single scan, and the bootstrap is much faster
because it involves only a single chromosome.

For the first benchmark, we ran scanonevar.perm on the data
from Kumar et al. (2013) and Corty et al. (2018), which contains
244 individuals and 582 loci, varying the number of permutations de-
sired and the number of computer cores used. For a given number of
cores, the relationship between time and the number of permutations is
linear (Figure 4), the slope depending on the number of cores and
ranging from � 6.3 sec per permutation with 4 cores to � 1.2 sec
per permutation with 32 cores.

For the second benchmark, we ran scanonevar.perm on
simulated data, always conducting 1000 permutations and using
32 cores, but varying the number of individuals in the mapping pop-
ulation and the number of markers in the genome. For a given pop-
ulation size, there is a slightly curvilinear relationship between
number of markers and time required (Figure 5), which reflects a
linear increase in the time taken to conduct the permuted genome
scans plus an increase in the time taken for “bookkeeping” tasks like
organizing and reshaping genetic data. The slope (minutes per locus)
depends on the population size, ranging from � 1.4 sec per locus
with a population of size 100 to� 3.3 sec per locus with a population
of size 800.

Based on these benchmarks, theworkflowpresented here is practical
for QTL mapping F2 intercross and similar populations on modern,

multi-core scientific computers. Populationswithmany recombinations,
where dense genotyping arrays that interrogate . 10,000 loci, could
not be practically analyzed with package vqtl in this way, although it is
likely that statistical and computational steps could be taken to make
such studies feasible: statistically, techniques could be used that allow
for large-scale analysis without permutation testing (Efron 2004);
computationally, the software could be modified to run on a com-
puter cluster, rather than on a single computer (Jette and Grondona
2003; Marchand 2017).

CONCLUSION
We have demonstrated typical usage of the R package vqtl for mean-
variance QTLmapping in an F2 intercross. This package is appropriate
for crosses and phenotypes where genetic factors or covariates or are
known or suspected to influence phenotype variance. In the case of
genetic factors, they can be mapped, as illustrated in one companion
article (Corty et al. 2018). In the case of covariates, they can be accom-
modated, which can increase power and improve false positive rate
control, as illustrated in another companion article (Corty and Valdar
2018).

RESOURCES
The scripts used to simulate genotypes and phenotypes, conduct the
genome scans, and plot the results are available as a public, static
Zenodo repository at DOI: 10.5281/zenodo.1336302. The package
vqtl and its documentation are freely available on CRAN at
https://CRAN.R-project.org/package=vqtl.
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Figure 5 Time taken to run 1000 permutation scans
on 32 cores on simulated data using scanonevar.

perm, varying the number of individuals in the map-
ping population and the number of markers in the
genome. For a given population size, there is a
slightly supra-linear relationship between number
of markers and time required. The average slope
of the line indicates the average time required per
locus and is dependent on the population size,
ranging from � 1.4 sec per locus with a population
of size 100 to � 3.3 sec per locus with a population
of size 800.
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Figure A1 For each of the four simulated phenotypes with background variance heterogeneity, the genome scan shows the LOD score of each
test – mean, variance, and joint – in blue, red, and black, respectively. The traditional test is in green and globally similar to the mean test.
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Figure A2 For each of the four simulated phenotypes with background variance heterogeneity, the genome scan shows the -log10 of the FWER-
corrected p-value of each test – mean, variance, and joint – in blue, red, and black, respectively. Thus, a value of 2 implies that the quantity of
evidence against the null is such that we expect to see this much or more evidence once per 100 phenotypes with no true QTL.

Volume 8 December 2018 | R Package vqtl | 3765

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/8/12/3757/6026866 by guest on 27 February 2022



Figure A3 mean_var_plot’s show
the estimated genotype effects at a
locus, with mean effects on the hori-
zontal axis and variance effects on the
vertical axis. Horizontal lines indicate
standard errors for mean effects and
vertical lines indicate standard errors
for variance effects. For phenotype1x,
the pattern of overlapping estimates
and standard errors is consistent with
the fact that there are no genetic
effects, and the p-value was not sta-
tistically significant at any locus. For
phenotype2x, the pattern of horizon-
tal, but not vertical, separation visually
illustrates the identified mQTL on a
background of variance heterogene-
ity. For phenotype3x, the pattern of
vertical, but not horizontal, separation
visually illustrates the identified vQTL
on a background of variance hetero-
geneity. For phenotype4x, the pattern
of two dimensional separation without
either total horizontal or vertical separa-
tion illustrates an mvQTL with neither
mean nor variance effect strong enough
to define an mQTL or vQTL on a back-
ground of variance heterogeneity.
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